44l

by Schneider Electric

ModBUS Addons
Library
User Guide

Publisher: HVAC Solution Center, Alpago (BL) — Italy
Authors: Federico Marcassa, Pierpaolo Armeli

Doc. Version: v0.7

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

Table of Contents

1. Modbus Commands on Event 6
1.1. Introduction 6
1.2. ModBUS Master Functions in Application 6

1.2.1. Configuration Details 6
1.2.2. ModBUS Master: Application vs Connection 7
1.2.3. ModBUS Master from Application: remarks 7

2. ModBUS Addons Library 8

2.1. Library Overview 8
2.1.1. Library Description 8
2.1.2. Function Blocks and Structures List 9
2.1.3. Library Implementation Overview 9

2.2. Library Contents Details 11
2.2.1. ModbusRTUKeepAlive 11
2.2.2. rtuNodeMgr 12
2.2.3. foModbusRTU_SendFCO01 13
2.2.4. foModbusRTU_SendFCO02 13
2.2.5. foModbusRTU_SendFC03 13
2.2.6. foModbusRTU_SendFC04 14
2.2.7. foModbusRTU_SendFC05 14
2.2.8. foModbusRTU_SendFC06 15
2.2.9. foModbusRTU_SendFC15 15
2.2.10. fbModbusRTU_SendFC16 16
2.2.11. strModbusRTUslave 16
2.2.12. enKeepAliveStatus 17

3. Appendix 18

3.1. ModBUS Bridge Functionality 18
3.1.1. ModBUS Addresses 18
3.1.2. Commands supported by the Bridge 19

4. Publisher’s Info 20

Doc. v0.7 May 29, 2018 2

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

Safety Information and Good Practices

Before You Begin

General

The products specified in this document have been tested under actual service conditions. Of
course, your specific application requirements may be different from those assumed for this and
any related examples described herein. In that case, you will have to adapt the information
provided in this and other related documents to your particular needs. To do so, you will need to
consult the specific product documentation of the hardware and/or software components that you
may add or substitute for any examples specified in this documentation. Pay particular attention
and conform to any safety information, different electrical requirements and normative standards
that would apply to your adaptation.

© 2018 Eliwell Controls Srl. All rights reserved.

A WARNING

REGULATORY INCOMPATIBILITY

Be sure that all equipment applied and systems designed
comply with all applicable local, regional and national
regulations and standards

Failure to follow these instructions can result in death,
serious injury, or equipment damage.

Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Eliwell Controls Srl for any consequences arising
out of the use of this material. A qualified person is one who has skills and knowledge related to
the construction and operation of electrical equipment and its installation, and has received
safety training to recognize and avoid the hazards involved. Failure to observe this information
can result in injury or equipment damage.

The use and application of the information contained herein require expertise in the design and
programming of automated control systems. Only the user or integrator can be aware of all the
conditions and factors present during installation and setup, operation, and maintenance of the
machine or process, and can therefore determine the automation and associated equipment and
the related safeties and interlocks which can be effectively and properly used. When selecting
automation and control equipment, and any other related equipment or software, for a particular
application, the user or integrator must also consider any applicable local, regional or national
standards and/or regulations.

Some of the major software functions and/or hardware components used in the proposed
architectures and examples described in this document cannot be substituted without significantly
compromising the performance of your application. Further, any such substitutions or alterations
may completely invalidate any proposed architectures, descriptions, examples, instructions,
wiring diagrams and/or compatibilities between the various hardware components and software
functions specified herein and in related documentation. You must be aware of the consequences
of any modifications, additions or substitutions.

Doc. v0.7 May 29, 2018 3

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

A residual risk, as defined by EN/ISO 12100-1, Article 5, will remain if:

e itis necessary to modify the recommended logic and if the added or modified components
are not properly integrated in the control circuit;

» you do not follow the required standards applicable to the operation of the machine, or if
the adjustments to and the maintenance of the machine are not properly made (it is
essential to strictly follow the prescribed machine maintenance schedule);

» the devices connected to any safety outputs do not have mechanically-linked contacts.

A CAUTION

EQUIPMENT INCOMPATIBILITY

Read and thoroughly understand all device and software
documentation before attempting any component substitutions
or other changes related to the application examples provided
in the document

Failure to follow these instructions can result in injury, or
equipment damage.

Start-Up and Test

Before using electrical control and automation equipment after design and installation, the
application and associated functional safety system must be subjected to a start-up test by
gualified personnel to verify correct operation of the equipment. It is important that arrangements
for such testing be made and that enough time is allowed to perform complete and satisfactory
testing.

A CAUTION

EQUIPMENT OPERATION HAZARD

*Verify that all installation and set up procedures have been
completed.

*Before operational tests are performed, remove all blocks or
other temporary holding means used for shipment from all
component devices

*Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in injury, or
equipment damage.

Verify that the completed system, including the functional safety system, is free from all short
circuits and grounds, except those grounds installed according to local regulations. If high-
potential voltage testing is necessary, follow the recommendations in equipment documentation
to help prevent injury or equipment damage.

Doc. v0.7 May 29, 2018 4

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

Operations and Adjustments

Regardless of the care exercised in the design and manufacture of equipment or in the selection
and ratings of components, there are hazards that can be encountered if such equipment is
improperly installed and operated.

In some applications, such as packaging machinery, additional operator protection such as point-
of-operation guarding must be provided. This is necessary if the hands and other parts of the
body are free to enter the pinch points or other hazardous areas where serious injury can occur.
Software products alone cannot protect an operator from injury. For this reason, the software
cannot be substituted for or take the place of point-of-operation protection.

A& WARNING

UNGUARDED MACHINERY CAN CAUSE SERIOUS INJURY

*Do not use this software and related automation equipment on
equipment which does not have point-of -operation protection.
*Do not reach into machinery during operation.

Failure to follow these instructions can result in death,
serious injury, or equipment damage.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation
protection have been installed and are operational before placing the equipment into service. All
interlocks and safeties related to point-of-operation protection must be coordinated with the
related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation
protection is outside the scope of the examples and implementations suggested herein. It is
sometimes possible to adjust the equipment incorrectly and this produce unsatisfactory or unsafe
operation. Always use the manufacturer instructions as a guide to functional adjustments.
Personnel who have access to these adjustments must be familiar with the equipment
manufacturer instructions and the machinery used with the electrical equipment.

Only those operational adjustments actually required by the machine operator should be
accessible to the operator. Access to other controls should be restricted to help prevent
unauthorized changes in operating characteristics.

Doc. v0.7 May 29, 2018 5

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

ModBUS Commands on Event 1

1.1. Introduction

It is possible to send ModBUS commands on event from FreeStudio Application starting from the
following targets on:

¢ ADVANCE with BIOS 596.6 and greater;
e ADVANCE 4DIN with BIOS 668.6 and greater.

The first release that supports this functionality is FreeStudio 3.9.1. Until then, it was possible to
send ModBUS commands only by using Connection, on those devices.

1.2. ModBUS Master Functions in Application

From FreeStudio 3.9.1, the followings ModBUS Master functions have been added in Application:

Operators and blocks

Mame Type Group Description

EF) sysMbMRTU_FC01 Function Send 001 command.
EF) sysMbMRTU_FC02 Function Send 002 command.
I sys=MbMRTU_FC03 Function Send 003 command.
I sysMbMRTU_FC04 Function Send 0xld command.
EF) sysMbMRTU_FC05 Function Send 0x03 command.
LF) sysMbMRTU_FC0E Function Send (n06 command.
ﬂ'sysMbMRTU_FC‘IS Function Send (kOF command.
ﬂ'sysMbMRTU_FC‘IE Function Send (x10 command.

Operator and standard blocks Target variables Target blocks

These functions allow to send ModBUS commands on Event through the master RS485 port
by calling them in Application.

The messages can be send only from programs assigned to the Background task.

1.2.1. Configuration Details
In order to set the RS5485 port as ModBUS Master, it is

required to set it from Connection. Mode
Therefore () Modbus Slave - BACnet MS/TF
! (® Modbus Master (for field)

Doc. v0.7 May 29, 2018 6

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

The message that has to be sent will be read from the FC function by the given object pointer.

The pointer has a @INT data type, therefore shorter/longer messages (e.g. USINT, UDINT,
REAL) to be sent have to be first stored/split in an INT variable. Then, the pointer to this last
one has to be passed to the function.

Function: sysMbMRTU_FCO08 (ver.1.0.0, EMBEDDED)

Return Value: UINT

nput

Name Type Description
addr USINT Physical address of the target slave
hasze UINT Address of the Register to write

object |-t:,,ii-.';' Register pointer

timeout UINT Timeout [ms]

1.2.2. ModBUS Master: Application vs Connection

The ModBUS Master commands available in Application are NOT a
substitution for the ModBUS functionalities available in Connection!

The ModBUS commands sent from Application will be executed in the
Background task and therefore will block the Background task during
their execution. The ModBUS commands on Event will be sent only after
that the RS485 is free from other commands.

For example, if the RS485 is busy because of commands sent from
Connection (e.g. a Slave is not available), a on Event command sent
from Application will block the background task execution until the
RS458 will be free and able to execute the on-Event command.

This means that the commands on Event have to used only when
required and not instead of using Connection (to be used when
possible).

1.2.3. ModBUS Master from Application: remarks

It is also important to evaluate the command timeout used when calling the FC functions, as it
will block the Background task for the whole timeout period in case of any communication
delay/error.

sysMEMRTI_FC16 (0, ADR_sysClockSet_seconds, 8, ADR(i_sy=Clock) [0]

In addition, it has to be checked if any slave is unreachable: the commands sent to the
unreachable slaves should be skipped, otherwise the Background task will be blocked for the
whole timeout period of each command.

It is a good practice not to send too many ModBUS messages per each background task
cycle execution.

Doc. v0.7 May 29, 2018 7

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

ModBUS Addons Library 2

2.1.

Library Overview

The current documentation (v0.7) is related to the . The library
is tested/supported on FreeStudio 3.9.1 and greater versions.

2.1.1.

Library Description

The ModBUS Addons library makes full use of the ModBUS Master on Event functionalities
available in FreeStudio Application beginning from the controller targets included with the version

3.9.1.

The key functionalities of the library are:

The functionality, which allows to keep alive the slaves which require to
receive at least one ModBUS message in a specifically defined timeframe, in order to keep
the ModBUS communication active.

This goes around the limitation arisen by the timeouts for the messages defined in SoM
Connection: in case some slaves are not connected, their timeouts may slow down the
communication and therefore not allow to send messages to a certain (connected) slave
with the desired frequency, leading to the loss of communication with that slave.

Ability to the node presence state ()
based on the slave status, therefore enabling or disabling the SoM Connection nodes.

operation, by sending messages on event
only to the slaves which are effectively present.

Ability to , keeping also a history of the
ModBUS messages on event related to each slave.

The targets supported by this library version are:

ADVANCE with BIOS 596.6 and greater;
ADVANCE 4DIN with BIOS 668.6 and greater.

Note: the rtuNodeMgr function block of this library cannot be used for those slaves that use the
Communication library. This has no impact on the Keep Alive functionality, which is independent.

Doc. v0.7

May 29, 2018 8

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

2.1.2. Function Blocks and Structures List

The function blocks (FB), functions (F), structures (str) present in the library are the following:

Type Name Description

It executes the Keep Alive functionality and monitor the

FB ModbusRTUKeepAlive .
slave connection status.
FB rtuNodeNgr It enables/disables the nodes defined in Connection, based
on their presence.
fbModbusRTU_SendFC03
FB - FBs that use the ModBUS on event FC03, FC06 and FC16
FB TbModbusRTU_SendFC06 functions, but send the messages only when the slave is
FB foModbusRTU_SendFC16 effectively present.

Structure that contains all the information regarding the on
str strModbusRTUslave event ModBUS messaging operation originating from a
certain slave.

2.1.3. Library Implementation Overview

The below reported schematic synthetizes how the ModBUS Addons library has been designed
to work and how the various function blocks and structures are interconnected.

There is a central structure, the , which will be defined as a global variable
and there will be one per slave. This structure contains all the relevant information about the slave
(address, status, timeout for the retry, number of retries, Keep Alive settings, communication
statistics) and is used in all the function blocks that make use of the ModBUS on event
functionalities.

This allows to keep the structure always aligned every time a message is sent and, on the other
hand, it optimizes the communication, by not sending messages to the slaves which are not
present.

The is a function block that sends a message at each time interval
defined by the uiKeepAlivePeriodPresent value, when the node status is PRESENT, and at each
uiKeepAlivePeriodMissing, in all the other cases. This allows to keep alive the slaves that require
to receive at least one ModBUS message at each specific timeframe, else those slaves disable
the ModBUS communication. This could not be guaranteed if the messages are sent from
Connection, e.g. in case there are not connected slaves that lead to long waits on the RS485,
because of the timeout associated to each message.

Based on the outcome of each message sent by the ModbusRTUKeepAlive, the status of the
related slave is updated. Considering that the slave information structure is passed whenever a
ModBUS command is sent by using the foModbusRTU_SendFC** FBs (e.g. a on event command
defined in background and used by the specific application), it may happen that some or all of the
messages that are supposed to be sent by the ModbusRTUKeepAlive are skipped, whenever in
the defined timeframe another message has already been sent. This optimizes the functionality
of the Keep Alive FB and reduces the traffic on the RS485.

It is required to instance one ModbusRTUKeepAlive per slave and assign the related program to
the background task.

Doc. v0.7 May 29, 2018 9

dill

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

usSlaveAddress
enSlaveStatus

i uiTimeout
usRetry
uiKeepAliveHoldingRegister
uiKeepAliveWaitBeforeSend
uiKeepAlivePeriodPresent
uiKeepAlivePeriodMissing
uiKeepAliveRebootTime
uilastMsgCode
udMsgSentOkCounter
udMsgSentErrCounter
uilastErrorCode
uilastMsgType
uiLastErrorRegister
udTimerlLastSent

ModbusRTU_SendFCO3 \ ModbusRTUKeepAlive

INSTANCES OF FUNCTION BLOCKS

ModbusRTU_SendFC06 BE romemm o StrModbusRTUslave [...] B3
Slavel Slave2 TX-2
ARRAY OF STRUCTURES
ModbusRTU_SendFC16 <

GLOBAL VARIABLES

S

PROGRAM

INSTANCES OF FUNCTION BLOCKS
ASSIGNED TO THE BACKGROUND TASK

GLOBAL VARIABLES
CALLED IN BACKGROUND PROGRAMS

rtuNodeMgr \ sysMbRtu

Node
INSTANCES OF FUNCTION BLOCKS

Presence

Slavel SoMACHINE HVAC

Slave2

Modbus Messages

k N EVEN

PROGRAM TARGET
VARIABLE

The fbModbusRTU_SendFCO03, foModbusRTU_SendFC06 and fbModbusRTU_SendFC16
function blocks use the ModBUS on event FC03, FC06 and FC16 functions, but keep also into
account the content of the slave structure. This has the following benefits:

- amessage is sent only if the target slave is effectively present;
- in case of a communication error, a send retry takes place;

- the structure is updated at each message sent; in details, the information about the status
is updated and also the time of the last sent message, which allows to skip a Keep Alive
message, if not required: in this case, it acts, in reality, in place of the Keep Alive.

In the ModBUS Addons library, the foModbusRTU_SendFCO03, foModbusRTU_SendFCO06 and
foModbusRTU_SendFC16 function blocks are already instanced in the ModbusRTU_SendFCO03,
ModbusRTU_SendFC06 and ModbusRTU_SendFC16 instances respectively. This allows to
simplify the call of the FBs and reduces the RAM memory usage. These function blocks have to
be called in Background.

Doc. v0.7 May 29, 2018 10

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

The function block automatically enables and disables the node presence related to
the nodes defined in Connection, based on the slave status defined in the slave structure. In this
way, when it is found that a slave is not present, the related node in Connection is disabled, in
order not to delay the communication with the other present nodes.

This is done by writing on the sysMbRtuNodePresence target variable. In addition, the FB allows
to manually force the presence of a node and to forcefully disable the writes for a node. One
function block instance per slave has to be created.

2.2. Library Contents Details

This chapter goes through the details of each component of the ModBUS Addons library.

2.2.1. ModbusRTUKeepAlive
This function block allows to get the following functionalities:
- Monitor the slave communication status.

- Keep alive the slaves that require to receive at least one ModBUS message at each
specific timeframe, else those slaves disable the ModBUS communication.

These goals are achieved by sending a ModBUS message to the targeted slave at each specific
period. Based on the outcome of each message, the status of the related slave is updated. The
slave is considered to be present only if it gets a correct answer.

It is required to create one instance of the FB per slave and assign the related program to the
background task.

Inputs Description

All the settings, which are not defined as inputs, are included in the strSlaveMonitored
structure.

Before sending a message, the FB waits for the xMsgSentByOther input to be TRUE. This
allows to avoid the various instances of the FB sending messages all at the same time. The
message is sent based on the udTimerLastSent information which is present in the slave
structure; if a message has already been sent to the slave in the specific timeframe by any other
call in the application, it is not send again by this FB, in order to reduce the traffic on the RS485.

The xWaitingReboot input can be used to wait for the slave until its reboot, right after a reboot
command has been sent (no ModBUS messages will be sent in the meanwhile). This will set the
Slave in the REBOOTWAIT status and back to PRESENT after the reboot time, if the Slave will
be reachable again.

Note that, if the Slave status is manually set to REBOOTWAIT and the Keep Alive functionality is
not used, the status has to be restored to PRESENT manually.

After getting no reply from the Slave, its status will be set to MISSING. In this case, the Keep Alive
will try to reach the slave with a different timeout, which is normally longer in order to reduce the
traffic on the RS485.

The XEN input, when FALSE, will set the Slave status to DISABLED. In this case no message will
be sent using the FCxx function blocks. Setting the XxEN to TRUE will re-enable the slave and
check whether it is present.

Doc. v0.7 May 29, 2018 11

by Schneider Electric

Expert Support Machine Solutions

ModBUS Addons Library User Guide

Input:

Name Type Description
XEN BOOL Slave Enabled
strSlaveMonitored @strModbusRTUslave Monitored Slave
xMsgSentByOther BOOL Message Sent by another instance
xWaitingReboot BOOL Thle slave has been rebooted externally, it works on

rising edge
Output:

Name Type Description
iLastValueRead INT Last value read from the selected register
xMsgSent BOOL Message Sent by one of the instances

2.2.2. rtuNodeMgr

This function block automatically enables and disables the node presence related to the nodes
defined in Connection, based on the slave status defined in the strSlaveMonitored structure.

In this way, when it is found that a slave is not present, the related node in Connection is disabled,
in order not to delay the communication with the other present nodes. This is done by writing on
the sysMbRtuNodePresence target variable.

The two additional inputs allow to:
- xForceManualPresence: manually force the presence of a node;
- xForceWriteDisable: forcefully disable the writes for a node.

Note: since the rtuNodeMgr function block of the ModBUS Addons library and the function blocks
of the Communication library act both actively on the sysMbMRtuNodePresence array, the
rtuNodeMgr cannot be used for those slaves that use the Communication library.
This has no impact on the Keep Alive functionality, that can be used without encountering issues
as it works independently.

Input:
Name Type Description
XEN BOOL
strSlaveMonitored @strModbusRTUslave Monitored Slave
iNode INT Slave Node Index
XForceManualPresence BOOL If true, sysMbMRtuNodePresence is forced to TRUE
xForceWriteDisable BOOL If true, sysMbMRtuNodeDisableWrites is forced to
TRUE
Output:
Name Type Description
usStatus USINT O=Disabled 1=Running 2=Cfg Error
Doc. v0.7 May 29, 2018 12

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

2.2.3. fbModbusRTU_ SendFCO01

This function block executes the sysMbMRTU_FCO1 command (Read Coils), by also taking into
account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = |Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.4. fbModbusRTU_ SendFCO02

This function block executes the sysMbMRTU_FC02 command (Read Discrete Input), by also
taking into account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.5. fbModbusRTU_ SendFCO03

This function block executes the sysMbMRTU_FCO3 command (Read Holding Register), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;

Doc. v0.7 May 29, 2018 13

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.6. fbModbusRTU_SendFC04

This function block executes the sysMbMRTU_FC04 command (Read Input Registers), by also
taking into account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.7. fbModbusRTU_SendFCO05

This function block executes the sysMbMRTU_FCO05 command (Write Single Coil), by also taking
into account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

Doc. v0.7 May 29, 2018 14

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.8. fbModbusRTU_SendFCO06

This function block executes the sysMbMRTU_FC06 command (Write Single Register), by also
taking into account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.9. fbModbusRTU SendFC15

This function block executes the sysMbMRTU_FC15 command (Write Multiple Coils), by also
taking into account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

Doc. v0.7 May 29, 2018 15

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

2.2.10. fbModbusRTU_SendFC16

This function block executes the sysMbMRTU_FC16 command (Write Multiple Registers), by also
taking into account the following:
- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:

0 = No error occurred
8 = Communication channel configuration error
14 = |Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
255 = Message not sent, slave not present

Other values correspond to the Modbus Exception codes

2.2.11. strModbusRTUslave

This structure contains all the relevant information about the slave (address, status, timeout for
the retry, number of retries, Keep Alive settings, communication statistics) and is used in all the
function blocks that make use of the ModBUS on event functionalities.

This allows to keep the structure always aligned every time a message is sent and, on the other
hand, it optimizes the communication, by not sending messages to the slaves which are not
present.

When the Slave Address is equal to 0, which corresponds to a ModBUS Broadcast message, the
following settings are applied automatically when calling the FC function blocks that support the
broadcast messages (05, 06, 15, 16), by changing the related slave structure:

e The status is set to PRESENT, as this property defines whether the message will be sent
or not, but is undefined for the 0 address. Note: the Keep Alive cannot be used for the 0
address.

e The Timeout is set to 1 ms, as the slaves do not reply, therefore the waiting time will not
bring any benefit, but only extend the background execution time.

e The Retry is set to 0, as the need to retry the send operation cannot be based on any
feedback coming from the slaves, because the slaves do not reply to broadcast messages.

Name Type Description
usSlaveAddress USINT Address of the slave to be monitored
enSlaveStatus enKeepAliveStatus gzg::s(’)g% v%/;;:]egsent 2=Disabled 4=CFG ERROR
uiTimeout UINT Message Timeout [ms] - Default 400
usRetry USINT Number of retries - Default 1
uiKeepAliveHoldingRegister | UINT Holding Register to be read for KeepAlive

Doc. v0.7 May 29, 2018 16

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

uiKeepAliveWaitBeforeSend | UINT

uiKeepAlivePeriodPresent

uiKeepAlivePeriodMissing

uiKeepAliveRebootTime
uiLastMsgType
udMsgSentOkCounter
udMsgSentErrCounter
viLastErrorCode
usLastErrorMsgType
uiLastErrorRegister

udTimerLastSent

Min Time to wait before sending a new message for
KeepAlive [ms] - Default 600

UINT Message period when slave is present [ms] - Default

1000
UINT Message period when slave is not present [ms] -
Default 30000
UINT Time to be waited after the slave reboot
USINT Last Valid Message Type
UDINT Number of messages sent correctly
UDINT Number of error messages
UINT Last Error Code
USINT Last Error Message Type
UINT Last Error Message First Register
UDINT sysTimer value of last message sent

2.2.12. enKeepAliveStatus

This enumerative is about the Slave Status and can have the following entries:

Name Value
MISSING 0
PRESENT 1
DISABLED 2
CFGERROR 4
REBOOTWAIT 8

Description
Slave Communication Error
Slave Online
Slave Disabled
Configuration Error

Reboot Time Waiting

The FC function blocks included in this library make use of the Keep Alive status of the slave. The

key points are:

e Only if the slave status is PRESENT, the FC function blocks send ModBUS messages.

e When the status is MISSING, the Keep Alive will still send messages, but with a different
period (normally longer). In case the Keep Alive is not used, the status has to be manually
reset to PRESENT.

e When the slave is DISABLED, no message is sent, not even from the Keep Alive. This
status is set by the Keep Alive when its XEN is set to FALSE. It is restored when it is set

back to TRUE.

o The REBOOTWAIT status allows not to send messages to a slave for a specific period,
during which the slave is supposed to be rebooting. After that, the slave status can be set
again back to PRESENT. This takes place automatically when the Keep Alive is used,
otherwise it has to be reset manually.

Doc. v0.7 May 29, 2018

17

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

Appendix 3

3.1. ModBUS Bridge Functionality
The ADVANCE can act as a bridge through which the Slaves (e.g. AVP) are accessible.

To enable the Bridge functionality, it is required to call the sysBridge function from the
Application running on the ADVANCE.

e The first input of the sysBridge function is the address of the Slave for which you would
like the Bridge function to be enabled.

e Passing 255 as address (as in the picture), all the Slaves will be enabled.

The sysBridge_Priority function allows to assign to the Bridge the same priority which the
ModBUS messages managed by the ADVANCE have.

<+ Enable the bridge functionality
ket . =sy=Bridge(255 TEUE, 1000,1000, 10007 ;

<% Jzed to as=sign the zame priority of the ModBUS messages
managed by the M17ZP to the bridge functionality *®.
xFet : =sy=Bridge Prioritv({TRUE):

Bridge (ADVANCE) Application code in a Background task program

3.1.1. ModBUS Addresses

e When the bridge is disabled, the ADVANCE replies to all the ModBUS addresses [1-255]
under the TCP/IP protocol.

¢ When the bridge is enabled, the ADVANCE uses only the 255 ModBUS address.
The other addresses are left free for the Slaves.
The messages sent to an address other than 255 are routed to the related Slave.

In order to access a Slave (e.g. AVP) by using the bridge function, the communication of the
Slave has to be set as follows:

e The IP address is the bridge address (ADVANCE).

¢ The ModBUS address is the one of the Slave you would like to access (AVP address).

Communication
IP or hostname |10.136.113.104
Port |5I}2
Frotocol
* Modbus Address 1
" Jbus Time out {ms) ’1[)[)[)7
Connect timeout |5000

oK | Cancel |

un | caneer)

Doc. v0.7 May 29, 2018 18

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

3.1.2. Commands supported by the Bridge

The Bridge supports the ModBUS Commands 0x03 (Read Holding Register) and 0x16 (Write
Multiple Register) and the application/BIOS update from Device and Application.

In order to execute application/BIOS updates through ModBUS using the Bridge functionality, it
is highly recommended to temporarily disable all the ModBUS communications on the
network that normally take place from the master.

The aim is to have the highest available bandwidth for the specific ModBUS action.
This is equivalent to temporarily enable a Service mode that will need to:

e Set to FALSE all the sysMbMRtuNodePresence entries.

e Disable all the on Event ModBUS commands.

Doc. v0.7 May 29, 2018 19

by Schneider Electric

Expert Support Machine Solutions ModBUS Addons Library User Guide

Publisher’s Info 4

The publisher of this library is the based in Alpago (BL), Italy.
Its main goal is to work on machine architecture solutions, software libraries and application notes.
Its members are:

e Federico Marcassa
federico.marcassa@schneider-electric.com

e Pierpaolo Armeli
pierpaolo.armeli@schneider-electric.com

Doc. v0.7 May 29, 2018 20

mailto:federico.marcassa@schneider-electric.com
mailto:pierpaolo.armeli@schneider-electric.com

	1. Modbus Commands on Event
	1.1. Introduction
	1.2. ModBUS Master Functions in Application
	1.2.1. Configuration Details
	1.2.2. ModBUS Master: Application vs Connection
	1.2.3. ModBUS Master from Application: remarks

	2. ModBUS Addons Library
	2.1. Library Overview
	2.1.1. Library Description
	2.1.2. Function Blocks and Structures List
	2.1.3. Library Implementation Overview

	2.2. Library Contents Details
	2.2.1. ModbusRTUKeepAlive
	2.2.2. rtuNodeMgr
	2.2.3. fbModbusRTU_SendFC01
	2.2.4. fbModbusRTU_SendFC02
	2.2.5. fbModbusRTU_SendFC03
	2.2.6. fbModbusRTU_SendFC04
	2.2.7. fbModbusRTU_SendFC05
	2.2.8. fbModbusRTU_SendFC06
	2.2.9. fbModbusRTU_SendFC15
	2.2.10. fbModbusRTU_SendFC16
	2.2.11. strModbusRTUslave
	2.2.12. enKeepAliveStatus

	3. Appendix
	3.1. ModBUS Bridge Functionality
	3.1.1. ModBUS Addresses
	3.1.2. Commands supported by the Bridge

	4. Publisher’s Info

