

Expert Support Machine Solutions

BACnet Addons
Library

User Guide

Publisher: HVAC Solution Center, Alpago (BL) – Italy
Authors: Federico Marcassa, Pierpaolo Armeli
Doc. Version: v1.4

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 2

Table of Contents

1. Introduction to BACnet __ 7

1.1. Overview __ 7

1.2. BACnet/IP and BACnet MS/TP on Evolution/Advance _____________________________ 7
1.2.1. BACnet profile and options ___ 8

1.3. BACnet Objects on Evolution/Advance ___ 8

1.4. BACnet Objects on FreeStudio __ 9
1.4.1. Object Attributes ___ 9

1.4.1.1. Object Type, Identifier and Name __ 9
1.4.1.2. Present Value, Priority Array and Relinquish Default ________________________ 10
1.4.1.3. Attributes Properties ___ 10

1.4.2. HowTo Restore the EEPROM BACnet defaults ________________________________ 11
1.4.3. Device Object __ 12
1.4.4. Analog Objects ___ 13

1.4.4.1. Analog_Input ___ 13
1.4.4.2. Analog_Output, Analog_Value ___ 13

1.4.5. Binary Value Object ___ 13
1.4.6. Multi State Objects __ 14
1.4.7. Calendar Object __ 14
1.4.8. Schedule Object __ 14
1.4.9. Notification Class Object __ 15

2. BACnet Addons Library __ 16

2.1. Overview ___ 16

2.2. Description ___ 16

2.3. Priority Array and Relinquish Default Management in the Library __________________ 17

2.4. Function Blocks and Programs __ 18
2.4.1. List of the FBs and Progs ___ 18
2.4.2. BACnet_PVUpdPr __ 19
2.4.3. BACnet_AI_SetPV __ 20
2.4.4. BACnet_RelDef_AV_link_*EE ___ 21

2.4.4.1. BACnet_RelDef_AV_link_iEE __ 21
2.4.4.2. BACnet_RelDef_AV_link_rEE ___ 25
2.4.4.3. BACnet_RelDef_AV_link_uiEE ___ 25

2.4.5. BACnet_BI_SetPV __ 25
2.4.6. BACnet_RelDef_BV_link_xEE ___ 27
2.4.7. BACnet_MSI_*SetPV __ 29

2.4.7.1. BACnet_MSI_diSetPV ___ 29
2.4.7.2. BACnet_MSI_udiSetPV __ 31
2.4.7.3. BACnet_MSI_usiSetPV __ 31

2.4.8. BACnet_RelDef_MV_link_*EE ___ 31
2.4.8.1. BACnet_RelDef_MV_link_iEE ___ 31
2.4.8.2. BACnet_RelDef_MV_link_rEE ___ 34
2.4.8.3. BACnet_RelDef_MV_link_udiEE _______________________________________ 34
2.4.8.4. BACnet_RelDef_MV_link_uiEE __ 35
2.4.8.5. BACnet_RelDef_MV_link_usiEE _______________________________________ 35

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 3

2.4.9. BACnet_ObjID ___ 35
2.4.10. BACnet_ObjID_De_store_EE __ 35
2.4.11. BACnet_UdAsReal_read ___ 36
2.4.12. BACnet_UdAsReal_write ___ 37
2.4.13. BACnet_udiValue_link_rEE ___ 38

3. BACnet Application Project Sample _________________________________ 39

3.1. Overview ___ 39

3.2. Sample thermostat application ___ 39
3.2.1. hysteresis_ST __ 39
3.2.2. Thermostat __ 39
3.2.3. usiOperating_State __ 39
3.2.4. Other status variables and EEPROM parameters ______________________________ 39

3.3. BACnet Objects Templates __ 40

3.4. Implementing the BACnet protocol into an existing application____________________ 40
3.4.1. Load the BACnet_IEC.PLL and BACnet_Addons.plclib libraries ___________________ 40
3.4.2. Add the Device BACnet Object___ 40
3.4.3. Add an Analog Value BACnet Object __ 40
3.4.4. Add a Binary Value BACnet Object ___ 41
3.4.5. Add a Multi State Value BACnet Object ______________________________________ 41
3.4.6. Define the EEPROM parameters & StatusVars used in the BACnet setup ___________ 41
3.4.7. HowTo Code the BACnet_Setup_Init program _________________________________ 42
3.4.8. HowTo Code the BACnet_BBMD_ReinitDevice program ________________________ 43
3.4.9. HowTo Automate the Present_Value update procedure _________________________ 44
3.4.10. HowTo Link an EEPROM Parameter to a BACnet Analog Value Object _____________ 45
3.4.11. HowTo Link an EEPROM Parameter to a BACnet Binary Value Object _____________ 46
3.4.12. HowTo Configure a Multi State Input BACnet Object ____________________________ 47
3.4.13. HowTo Configure a Binary Input BACnet Object _______________________________ 47
3.4.14. HowTo Configure an Analog Input BACnet Object______________________________ 48
3.4.15. HowTo Link an EEPROM Parameter to a BACnet Multi State Value Object __________ 48
3.4.16. HowTo Setup a Schedule BACnet Object ____________________________________ 49
3.4.17. HowTo Setup a Calendar BACnet Object ____________________________________ 51
3.4.18. HowTo Setup a Notification Class BACnet Object ______________________________ 51
3.4.19. EEPROM variable names and HMI ___ 51

3.5. Testing BACnet with YABE __ 52
3.5.1. HowTo Add a BACnet Device in YABE and Subscribe to an Object ________________ 52
3.5.2. HowTo Subscribe a BACnet Object ___ 52
3.5.3. HowTo Change the Relinquish_Default ______________________________________ 53
3.5.4. HowTo Write on the Priority_Array __ 53
3.5.5. HowTo Edit a Calendar Object ___ 53
3.5.6. HowTo Edit a Schedule Object ___ 54
3.5.7. HowTo Reinitialize the Device via BACnet ____________________________________ 54

4. Appendix ___ 55

4.1. Hardware Information ___ 55
4.1.1. Usage of the EEPROM vs BACnet __ 55

4.2. Acronyms __ 55

5. Publisher’s Info ___ 56

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 4

Safety Information and Good Practices

Safety Information and Good Practices

Before You Begin
General
The products specified in this document have been tested under actual service conditions. Of
course, your specific application requirements may be different from those assumed for this and
any related examples described herein. In that case, you will have to adapt the information
provided in this and other related documents to your particular needs. To do so, you will need to
consult the specific product documentation of the hardware and/or software components that you
may add or substitute for any examples specified in this documentation. Pay particular attention
and conform to any safety information, different electrical requirements and normative standards
that would apply to your adaptation.
© 2018 Eliwell Controls Srl. All rights reserved.

 WARNING
REGULATORY INCOMPATIBILITY
Be sure that all equipment applied and systems designed
comply with all applicable local, regional and national
regulations and standards

Failure to follow these instructions can result in death,
serious injury, or equipment damage.

Note
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Eliwell Controls for any consequences arising out of
the use of this material. A qualified person is one who has skills and knowledge related to the
construction and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved. Failure to observe this information can
result in injury or equipment damage.
The use and application of the information contained herein require expertise in the design and
programming of automated control systems. Only the user or integrator can be aware of all the
conditions and factors present during installation and setup, operation, and maintenance of the
machine or process, and can therefore determine the automation and associated equipment and
the related safeties and interlocks which can be effectively and properly used. When selecting
automation and control equipment, and any other related equipment or software, for a particular
application, the user or integrator must also consider any applicable local, regional or national
standards and/or regulations.

Some of the major software functions and/or hardware components used in the proposed
architectures and examples described in this document cannot be substituted without significantly
compromising the performance of your application. Further, any such substitutions or alterations
may completely invalidate any proposed architectures, descriptions, examples, instructions,
wiring diagrams and/or compatibilities between the various hardware components and software
functions specified herein and in related documentation. You must be aware of the consequences
of any modifications, additions or substitutions.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 5

A residual risk, as defined by EN/ISO 12100-1, Article 5, will remain if:
• it is necessary to modify the recommended logic and if the added or modified components

are not properly integrated in the control circuit;
• you do not follow the required standards applicable to the operation of the machine, or if

the adjustments to and the maintenance of the machine are not properly made (it is
essential to strictly follow the prescribed machine maintenance schedule);

• the devices connected to any safety outputs do not have mechanically-linked contacts.

 CAUTION
EQUIPMENT INCOMPATIBILITY
Read and thoroughly understand all device and software
documentation before attempting any component substitutions
or other changes related to the application examples provided
in the document

Failure to follow these instructions can result in injury, or
equipment damage.

Start-Up and Test
Before using electrical control and automation equipment after design and installation, the
application and associated functional safety system must be subjected to a start-up test by
qualified personnel to verify correct operation of the equipment. It is important that arrangements
for such testing be made and that enough time is allowed to perform complete and satisfactory
testing.

 CAUTION
EQUIPMENT OPERATION HAZARD

•Verify that all installation and set up procedures have been
completed.

•Before operational tests are performed, remove all blocks or
other temporary holding means used for shipment from all
component devices

•Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in injury, or
equipment damage.

Verify that the completed system, including the functional safety system, is free from all short
circuits and grounds, except those grounds installed according to local regulations. If high-
potential voltage testing is necessary, follow the recommendations in equipment documentation
to help prevent injury or equipment damage.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 6

Operations and Adjustments
Regardless of the care exercised in the design and manufacture of equipment or in the selection
and ratings of components, there are hazards that can be encountered if such equipment is
improperly installed and operated.
In some applications, such as packaging machinery, additional operator protection such as point-
of-operation guarding must be provided. This is necessary if the hands and other parts of the
body are free to enter the pinch points or other hazardous areas where serious injury can occur.
Software products alone cannot protect an operator from injury. For this reason, the software
cannot be substituted for or take the place of point-of-operation protection.

 WARNING
UNGUARDED MACHINERY CAN CAUSE SERIOUS INJURY
•Do not use this software and related automation equipment on
equipment which does not have point-of -operation protection.

•Do not reach into machinery during operation.

Failure to follow these instructions can result in death,
serious injury, or equipment damage.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation
protection have been installed and are operational before placing the equipment into service. All
interlocks and safeties related to point-of-operation protection must be coordinated with the
related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation
protection is outside the scope of the examples and implementations suggested herein. It is
sometimes possible to adjust the equipment incorrectly and this produce unsatisfactory or unsafe
operation. Always use the manufacturer instructions as a guide to functional adjustments.
Personnel who have access to these adjustments must be familiar with the equipment
manufacturer instructions and the machinery used with the electrical equipment.
Only those operational adjustments actually required by the machine operator should be
accessible to the operator. Access to other controls should be restricted to help prevent
unauthorized changes in operating characteristics.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 7

1. Introduction to BACnet

Introduction to BACnet

1.1. Overview
BACnet (Building Automation Control networks) is a communications protocol for building
automation and control networks. It follows the ASHRAE, ANSI, and ISO standards and it is a
registered ASHRAE trademark. BACnet® is an 'open' – i.e. non-proprietary – data exchange
protocol.
It was designed to allow communications/information exchange
between computerized building automation devices and control
systems communications in a range of applications including
HVAC, lighting control, detection systems, etc.
In this chapter you can find the details about which are the BACnet functionalities
implemented in the Evolution/Advance controllers. For all the details about the
BACnet protocol, the key reference is the ASHRAE BACnet specification
(ANSI/ASHRAE Standard 135-2008).
The Advance device family is BTL Certified.

1.2. BACnet/IP and BACnet MS/TP on Evolution/Advance
The BACnet protocol guarantees full interoperability between control devices for BMS by defining
a set of simple, unambiguous rules for communication between devices made by different
manufacturers on a common platform.
The various Evolution/Advance controllers implement the BACnet IP protocol (it works through IP
address-based Ethernet connection and therefore uses UDP/IP frames) and/or the BACnet
MS/TP protocol (using the RS485 connection).
BACnet MS/TP and the BACnet IP protocols cannot be active at the same time.
Note that the BACnet MS/TP and the BACnet IP protocols are both already embedded onboard
on the EVP and Advance products.
On the EVD and EVC controllers, a plug-in communication module is required to implement the
BACnet protocol.
On the Advance 4DIN products, the BACnet MS/TP is already on-board. To have BACnet/IP, the
above mentioned plug-in is required.
The BACnet protocol defines a certain number of objects and a series of services used for BMS
communication. The BACnet /IP and MS/TP protocols management is implemented in the
Application (to define BACnet Objects) and Device (Load_BACnet_E2_Defaults,
Port_BACnet_IP parameters) work environments of FreeStudio.
Note that BACnet/IP can coexist with all the other TCP functionalities.

1

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 8

1.2.1. BACnet profile and options
In this chapter you can find some details regarding which profile and options of the BACnet
protocol are implemented in the Evolution/Advance controllers.
The implemented Device Profile is the BACnet Advanced Application Controller (B-AAC) with
the highest conforming profile, and therefore the B-ASC, B-SA and B-SS profiles are also
supported.
The implemented BACnet/IP profile has the segmentation capability on the transmission side
and with a window size of 1476 byte/seg. It is not implemented for the received messages.
The BACnet/IP protocol operates with a data rate of 10/100 MBPS. The BACnet MS/TP slave
protocol can use the following data rates: 9600, 19200, 38400, 76800 BPS. The
Evolution/Advance controllers are not able to act as a Router for Data Link.
The device supports the registration as a foreign device. The supported character sets are ANSI
X3.4 and ISO 8859-1.

1.3. BACnet Objects on Evolution/Advance
The BACnet protocol has a standard set of objects, which contain a standard set of attributes
that can be read and written by other devices in the BACnet network. The objects are controlled
by other BACnet devices via their attributes.
The supported BACnet Object Types on the Evolution/Advance controllers are the following:

Object Type Description MAX
instances

Device

Describes the properties (e.g. name, identifier, firmware version).
It is the only type of object which is compulsory and it can have only one
instance defined, which MUST be unique.

1

AN
AL

O
G

VA

LU
E

Analog
Value

It represents an Analog Value.
It can be used to manage analog setpoints.

256
NOTE 1

Analog
Input

It represents an Analog Input.
It can be used to manage analog inputs, temperatures, values.

Analog
Output

It represents an Analog Output.
It can be used to manage analog outputs.

 Binary
Value

It represents a binary value, which can be only two distinct values.
It can be used for ON/OFF relay, digital I/O, TRUE/FALSE, etc. 256

M
U

LT
I

ST
AT

E
VA

LU
E

Multi State
Value It represents a vector of up to 5 enumerated value/input.

It can be used for the Status of a process, e.g. the operating mode of a
device.

32
NOTE 1 Multi State

Input

Calendar

It assumes a Boolean TRUE value if the current date and time is within the
specified set or list of dates (defined as properties of the object); it is FALSE
otherwise (if not within the specified dates).
It can be used to specify Working days in the year, national and weekday
holidays, etc.

4

Schedule

It is assimilable to the definition of time bands: within a set of dates it can
assume different values on certain days of the week and in certain instances.
It can be used to define the lessons schedule for a class, to program a room
thermostat, etc.

16

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 9

 Notification
Class

Notifications to be sent to devices in the network.
It is used for Alarm messages to be sent. 16

NOTE 1: For this type of object, the max number of instances is defined as the sum of all the types belonging to the
father type (i.e. Analog Value number of instances has to be calculated as An. Value + An. Input + An. Output).

1.4. BACnet Objects on FreeStudio
Note that not all the BACnet Objects are supported on FreeStudio. Even if they are selectable
from the drop-down list, they are treated as the root object type, when compiling on FreeStudio.

This is the case of the Binary Input, the Binary Output and the Multi State Output.
See the next paragraphs about them for more details. For example, a function block to use a
Binary Value as a Binary Input is included in the library.
In this chapter, a description of each supported BACnet Object type is provided. A BACnet Object
Template per each type is attached to the library: this helps to implement the various objects, as
the attributes in the templates have already the suggested settings, which in general are the
mostly required by the application.

1.4.1. Object Attributes
Depending on how it is defined by the ASHRAE standard on BACnet, each object can have scores
of more or less complex attributes that can be specified in the PLC application using the various
fields each attribute has. The attributes which are not specified in attributes table (see Fig. 2 -
Example of Object Attributes for the table sample) will anyway be present in the Object and they
will have the default properties. It is not possible to define an Object with only a few attributes.
Note: Before adding an object, it is required to connect to the BACnet_IEC.pll library. See §3.2.1
for more details.

1.4.1.1. Object Type, Identifier and Name
Each object has always the following attributes already characterized, which are used to uniquely
identify each BACnet Object:

Attribute Description
Object_Type Defines the type of Object. It is not in the properties table list, but in the section above it

(see Fig. 1) and is only present for the Objects that can have more than one type.
Object_Identifier Generated automatically. 32-bit identifier linked to data / address type.

Object_Name Text string used in the searches broadcast by the BACnet devices (used as Alias).

Fig. 1 - Object_Type Location

The Object_Identifier related to the Device BACnet Object is particularly relevant as it
defines the BACnet ID of the entire device. See §1.4.3 Device Object for details.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 10

1.4.1.2. Present Value, Priority Array and Relinquish Default
Apart from the Device and the Notification Class, all the BACnet
Objects have the Present_Value attribute. This is a key attribute,
which contains the current value of each BACnet Object and which has
to be used for every calculation in the IEC code. It is also the value
which, as a standard, a BACnet supervisor will read to inspect the
value of a BACnet Object.
Two other key attributes are the Priority Array and the
Relinquish Default, which are used by the BACnet stack in the
determination of the Present_Value.

The (supported) BACnet Objects which have these two attributes are:
• Analog Value;
• Analog Output;
• Binary Value;
• Multi State Value.

The Present Value is equal to the valorized (not null) variable with
the highest level of priority. The variables taken into consideration for
this evaluation are the Priority Array and the Relinquish
Default.

The lowest priority variable is the Relinquish Default. The
Priority Array has a higher priority than the Relinquish
Default. Inside the Priority Array, the highest priority variable
is the row [0] of the array, whist the row [15] is the one with the lowest
priority.

Therefore, for example, the Present Value will be equal to the Relinquish Default only if
all the rows of the Priority Array are filled with null values.

The Relinquish Default is commonly used for the default value of a certain parameter, whilst
the supervisor would normally write on the Priority Array to temporarily change the
parameter value.

1.4.1.3. Attributes Properties
The available fields to specify the properties of each attribute are the following:

Field Description

Publish

Defines if the attribute has to be published at Modbus/CAN level

TRUE The attribute will be published at the address reported in the Address field, which will
be assigned automatically.

FALSE Not published; the Address field is empty and the attribute will not be usable at
Modbus/CANopen level.

Address Modbus/CAN address.
It is assigned automatically if Publish is TRUE. It is not assignable/editable if Publish is FALSE.

EEPROM

Defines if the attribute has to be stored in non-volatile memory. The available space is 16 Kbytes.

TRUE The attribute will be set as retentive (e.g. for counters, timers, etc.)

FALSE The attribute will be only available in RAM.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 11

Application
Type

Type of data used in the IEC code (UINT, BOOL, etc.).
It can also be an enumeration available in the BACnet_IEC library, whose default value can be set
using the drop-down menu which appears in “Default value”.

Default
value Initial value of the attribute.

Format Display format for the Default, Min and Max value

Min Minimum value of the attribute in case it is published

Max Maximum value of the attribute in case it is published

Unit Unit of Measurement in case it is published

Read only

Defines if the attribute is read only or R/W on the ModBUS/CAN side.

TRUE It is set as read only.

FALSE It is set as read/write

Description Attribute description in case it is published

Note that only the attributes configured as publish (i.e. Publish = TRUE) will be displayed in
Device and will have their own ModBUS address. These are also the only attributes whose default
values will be loaded in EEPROM (if the EEPROM field is TRUE) after that a download of the
parameters default values is performed (e.g. during the Download all procedure in Device).
In case of not published attributes, to load their default values, follow what is illustrated in the next
paragraph (§1.4.2 HowTo Restore the EEPROM BACnet).
It is possible to specify the properties of each BACnet attribute (e.g. if that attribute has to be
published, if it has to be stored in EEPROM, etc.) using the table shown in Fig. 2.

Fig. 2 - Example of Object Attributes

1.4.2. HowTo Restore the EEPROM BACnet defaults
The default values of the attributes of a BACnet Object that have the EEPROM field set as TRUE
are normally not restored after a restart of the device. However, their default value is restored on
the EEPROM using the Download all functionality of the Device work environment in case the
attribute is published. The published attributes (Publish = TRUE) have a ModBUS address
assigned and get therefore restored on the EEPROM.
In case of not published attributes (Publish = FALSE), the way to write the defaults on the
EEPROM is to set the Load_BACnet_E2_Defaults parameter to TRUE. If it is TRUE, the
defaults BACnet values are loaded in EEPROM at the next boot.
To enable this permanently, in the Application work environment, in Resources, under Modbus
objects\BIOS Parameters, add a new parameter and select Load_BACnet_E2_Defaults from
the drop-down list and set its Default value to TRUE.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 12

When using Device to perform a Download all, the application asks if you want to download the
parameters default values into the controller, answering Yes, it will download also the BIOS
parameters defaults specified in the above BIOS Parameters section (i.e. also the
Load_BACnet_E2_Defaults value) and all EEPROM parameters with a ModBUS address.
However, just right after that, when the device is rebooted (you need to answer Yes when you will
be asked to, or do it manually), the BACnet EEPROM parameters defaults will be loaded, since
the Load_BACnet_E2_Defaults value will be TRUE.

Note that, after each reboot, the Load_BACnet_E2_Defaults value is reset to FALSE.
Therefore, to download the EEPROM BACnet defaults, a Download all from Device has to be
performed. A simple restart (power off/ power on) of the controller is not sufficient, as the value
of the Load_BACnet_E2_Defaults parameter has to be set to TRUE before each reboot.

1.4.3. Device Object
The Device object is the only object that MUST always be present in a BACnet project. If it is not
present and another BACnet Object of any other type is present, there will be a compilation error.
This object has two specific editable fields: Subnet and Node number. The combination of them
will define the Object_Identifier, which will identify the device (i.e. EVD/AVD) in the network
of devices.
NOTE: the Object_Identifier of each BACnet device MUST be unique in the BACnet network
which the BACnet device is connected to. The IP address of each device must also be unique.
It is useful to have a non-static Object_Identifier because the ID that the device can have depends
also on the other devices present on the network to which the EVD/AVD will be connected. In this
way, it will be not application-dependent and therefore it will be easier to connect more controllers
with the same application on the same network.
This can be implemented by using the function BACnet_ObjID, which calculates the ID based
on two parameters (Subnet and Node number) that can be stored in the EEPROM. See §3.4.7
HowTo Code the BACnet_Setup_Init for more details.
The attributes Vendor_Name and Vendor_Identifier refer to the vendor details and are
released by bacnet.org. For Eliwell Controls the ID is 10.
The Firmware_Revision can be setup using the BACnet_Setup_Init (see §3.4.7).

The Application_Software_Version could be setup using a parameter linked to the
application.

Attached to this documentation is available a template of the Device BACnet Object.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 13

1.4.4. Analog Objects
The Analog Value can be of three types:

• Analog Input;

• Analog Output;

• Analog Value.

1.4.4.1. Analog_Input

The Present_Value of an Analog Input object type is directly writable from the IEC code. An AI
BACnet Object will only read from the IEC / be written by the IEC code, but there will be no write
operation from the BACnet side to the IEC code.
Templates to read a temperature and a humidity value from BACnet using an AI Object are
provided together with this documentation.
The Reliability attribute for an Analog Input is valorized as follows:

Reliability value Description PV value
(depending on the data format)

NO_SENSOR generic probe error
–32768
-3276.8
-327.68

UNRELIABLE_OTHER communication error with an I/O expansion
–32767... –32760
–3276.7... –3276.0
–327.67... 327.60

NO_FAULT_DETECTED no error in all the other cases

1.4.4.2. Analog_Output, Analog_Value

In the case of an Analog Value or an Analog Output, the Present_Value is calculated based
on the Relinquish_Default and the Priority_Array contents.

The Reliability attribute has to be set by the PLC.

An Analog Value object template is provided together with this documentation.

1.4.5. Binary Value Object
The Binary Value object is used for variables representing Boolean values such as enable
Settings or relay ON/OFF states.
Note that the Binary Input and the Binary Output object types are not really supported and will be
treated as Binary Value in the BACnet environment.
A template for a Binary Value is provided together with this documentation.
You can also find a template with the name BI_Template.xml that will allow you to use a Binary
Value as a Binary Input. It can be used in connection with the BACnet_BI_SetPV function block
to implement a Binary Input.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 14

1.4.6. Multi State Objects
The Multi State Value object can vary within a finite number of distinct values. The maximum
supported Number of states is five (5).
It is normally used for enumeration-type variables representing multiple states such as HEAT/
COOL/OFF, defrost cycles (request, start, duration, dripping, etc.).
A text string is associated to each state. Note that the index used for the strings starts from 0,
while the state number starts from 1.
Templates for a Multi State Input and a Multi State Value are provided together with this
documentation.
Note that the Multi State Output object type is not really supported and will be treated as a Multi
State Value in the BACnet environment.

1.4.7. Calendar Object
The Calendar object defines a set of dates. Depending on the set and based on the current date
of the device (RTC settings), the Present_Value of the object will be TRUE or FALSE. The
former if the current date is within the set, the latter if it is not.
The dates which can be defined are the following:

• a single date (a day);
• an interval of consecutive dates/days (a week, a month, ...);
• days that repeat in a cycle (first Monday of the month, every Saturday, every weekend, ...).

The Calendar is normally a static object.
The template included with this documentation can be used to have all the attributes properties
already setup.

1.4.8. Schedule Object
The Schedule object defines the planning of actions to be carried out in a certain dates interval,
with a possible weekly recurrence and with possible exceptions, which can be defined either
within the Schedule object itself or alternatively using a Calendar object in combination with it.
Based on which is the way you prefer to follow, you will find two Templates for the Schedule
object, one for with and one without the exceptions already defined as EEPROM attributes.
Depending on the current date and time, the Present_Value of the Schedule can assume
variable values as defined in the properties of the object itself.
Note that the variable values will be stored in an UDINT variable. Therefore, even if a value in
a different data type is passed, it is important to check if this is compatible with the UDINT data
type. It is suggested to use the USINT, the UINT or the UDINT data format for the value to be
passed.
Additionally, in case you would like to use REAL as data type, two functions to read and write an
UDINT as REAL have been added to the BACnet Addons Library (see §362.4.11 and §2.4.12)

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 15

1.4.9. Notification Class Object
The Notification Class object contains a list of devices to which notifications of messages and/or
alarms are sent on the basis of certain events defined in the Analog, Binary, and Multi State
objects.
Each event is associated to an action, and the Notification Class describes where and how the
chosen message will be sent.
The Notification_Class attribute of each Notification Class object is of type Unsigned, it shall
indicate the numeric value of this notification class and shall be equal to the instance number of
the Notification Class object.
Note that the various Evolution/Advance do not exchange messages between them in the
network. The notifications are send to the SCADA devices, which could eventually send them to
the Evolution/Advance.
Note also that each notification is generated by the objects themselves (e.g. Analog Value, Binary
Value, etc.) and not by the Notification Class object which is linked to those objects.
Each of those objects actually contains the following attributes, which allow to activate a certain
type of notification:

• Limit_Enable[0], Limit_Enable[1];

• Event_Enable[0], Event_Enable[1], Event_Enable[2];

• Notification_Class.

The value 4194303 for the Notification_Class attribute of an object shall be used to mark that
object as not linked to any notification class.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 16

2. BACnet Addons Library

BACnet Addons Library

2.1. Overview
The current documentation (v1.4) is related to the BACnet Addons library v.1.2.5. The library is
tested/supported on FreeStudio 3.9.1 and greater versions.

2.2. Description
The BACnet Addons library helps to simplify the implementation of the BACnet protocol into either
new or existing projects. This library is complementary to the BACnet_IEC library.
The key functionalities of the current library version are:

• Link an EEPROM parameter to:
o an Analog Value BACnet Object (supports INT, UINT, REAL);
o a Multi State Value BACnet Object (supports INT, UINT, UDINT, USINT, REAL);
o a Binary Value BACnet Object (supports BOOL).
o any UDINT attribute of any BACnet Object (supports REAL).

• Use an IEC variable to set the Present Value of:
o an Analog Input BACnet Object (supports INT, REAL);
o a Binary Value BACnet Object (supports BOOL);
o a Multi State Input BACnet Object (supports DINT, UDINT, USINT).

• Set the Object_Identifier of the Device BACnet Object using EEPROM parameters
and store in those parameters any change to the Idetifier originating from the BACnet side.

• Automate the Present Value update procedure of each BACnet Object type.

• Be able to read and write an UDINT value as REAL.

• Ability to manage the Schedule BACnet Object value as REAL.
In addition, in §3 BACnet Application Project Sample, you will find a guide about how to implement
the following functions:

• Setup the BBMD Service.

• Define the Warm Restart and Cold Restart procedures, which are executed by the
ReinitializeDevice service.

• Write the BACnet Setup Init, which for instance contains also the call to the
Object_Identifier function.

The targets supported by this library version are:
• EVD with BIOS 423.26 and greater;
• EVC with BIOS 477.26 and greater;
• EVP with BIOS 489.19 and greater;
• AVD with BIOS 596.6 and greater;
• AVD 4DIN with BIOS 668.6 and greater.

2

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 17

Together with the library and the implementation example, templates of several BACnet
Objects are provided to achieve a smoother and easier implementation of the various Objects.

2.3. Priority Array and Relinquish Default Management in the Library
Note that the §1.4.1.2 Present Value, Priority Array and Relinquish Default paragraph is a
prerequisite to the contents of the current one.

The “link” function blocks, which are detailed in the following chapters, can be used to link an
EEPROM parameter to a BACnet Object. These function blocks, except the
BACnet_udiValue_link_rEE which is mostly designed to be used in connection with the
Schedule Object, are designed for the BACnet Objects which have the Priority Array and the
Relinquish Default attributes.

The picture shows how these two attributes are managed by the library and where the Present
Value is used.

Note that the Present Value is the first output of all the “link” function blocks.

The “link” function blocks have the usiMode input which defines how the update of the
Relinquish Default and of the EEPROM parameter takes place. See the description of each
function block for more details about it.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 18

2.4. Function Blocks and Programs
In this chapter, the function blocks and programs that are part of the library are described, and
for each one an example of use is reported.

2.4.1. List of the FBs and Progs
The function blocks (FB), functions (F) present in the library are the following:

Type Name Description

FB BACnet_PVUpdPr Automate the Present Value update procedure of each
BACnet Object type.

FB BACnet_AI_SetPV Use an IEC variable to set the Present Value of an Analog
Input BACnet Object (supports INT, REAL).

FB BACnet_RelDef_AV_link_iEE
Link an EEPROM parameter to an Analog Value BACnet
Object (supports INT, UINT, REAL). FB BACnet_RelDef_AV_link_rEE

FB BACnet_RelDef_AV_link_uiEE

FB BACnet_BI_SetPV Use an IEC variable to set the Present Value of a Binary
Value BACnet Object (supports BOOL).

FB BACnet_RelDef_BV_link_xEE Link an EEPROM parameter to a Binary Value BACnet
Object (supports BOOL).

FB BACnet_MSI_diSetPV
Use an IEC variable to set the Present Value of a Multi State
Input BACnet Object (supports DINT, UDINT, USINT). FB BACnet_MSI_udiSetPV

FB BACnet_MSI_usiSetPV

FB BACnet_RelDef_MV_link_iEE

Link an EEPROM parameter to a Multi State Value
BACnet Object (supports INT, UINT, UDINT, USINT,
REAL).

FB BACnet_RelDef_MV_link_rEE

FB BACnet_RelDef_MV_link_udiEE

FB BACnet_RelDef_MV_link_uiEE

FB BACnet_RelDef_MV_link_usiEE

F BACnet_ObjID Set the Object_Identifier of the Device BACnet
Object using EEPROM parameters.

FB BACnet_ObjID_De_store_EE It stores in the EEPROM eventual changes to the Device
Object_Identifier from the BACnet side.

F BACnet_UdAsReal_read
Read and write an UDINT value as REAL.

F BACnet_UdAsReal_write

FB BACnet_udiValue_link_rEE Link a REAL EEPROM parameter to the value of an UDINT
BACnet attribute.

F BACnet_r_ROUND_di

It rounds a value properly in its conversion from REAL to
DINT / INT / UDINT / UINT.

F BACnet_r_ROUND_i

F BACnet_r_ROUND_udi

F BACnet_r_ROUND_ui

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 19

2.4.2. BACnet_PVUpdPr
This function block updates the Present_Value (PV) of all the supported BACnet Object Types:
Analog Value (AV), Binary Value (BV), Multi State Value (MV), Calendar (Ca).
The update timeframe is defined by uiPrd (in tenths of seconds).

It can be chosen if the Object Types have to be updated synchronously (all at the same time) or
asynchronously (alternatively, one per cycle), using the BOOL xSync input:

• If synchronously, all the Object Types will be updated at each uiPrd.
• If asynchronously, at each uiPrd defined timeframe, only one Object Type will be

updated, in a rotational sequence; therefore, the Object Types will be all updated in a
timeframe equal to four times the uiPrd.

You can decide to force the update of a specific Object Type at each uiPrd, overriding the
asynchronous setting for that Object Type only, by setting the related xForce∙∙∙ input to TRUE.

Context of use
It is strongly suggested to use this function block in every project where the BACnet protocol is
implemented, because otherwise the Present_Value will not be updated, unless this
functionality is implemented in another part of the code.

Inputs
Name Type Description

uiPrd UINT Present Value update period in [sec/10]

xSync BOOL Defines if the update of the BACnet Object Types Present Value has to be
synchronous or only one at each execution.

xForceAVUpd BOOL Forces the Analog Value Objects present value update at every run, if TRUE.

xForceBVUpd BOOL Forces the Binary Value Objects present value update at every run, if TRUE.

xForceMVUpd BOOL Forces the Multi State Value Objects present value update at every run, if TRUE.

xForceCaUpd BOOL Forces the Calendar Objects present value update at every run, if TRUE.

Outputs
Name Type Description

wBACnetObjUpdStat WORD Status of the BACnet Objects Present Value update. See the FB description for
details.

Present Value Update Status
The ouput variable wBACnetObjUpdStat is a WORD, which should be read as described below:

• the bits 0-3 contain the info about the last execution;
• the bits 8-11 contain the info about the first run of the update.

The four bits of each category (0-3 and 8-11) are correlated to the Object Types as follows (the
numbers refer to the bit number):

0. Analog Value;
1. Binary Value;
2. Multi State Value;
3. Calendar.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 20

FB Implementation Example
The following image shows an example of implementation of the BACnet_PVUpdPr FB.

In this case, no update of any Object Type is forced at each run and the update is asynchronous:
at each run, which is executed every ui_dt_BACnetUpd_dsec tenths of seconds, only one
Object Type is updated, in sequence.

2.4.3. BACnet_AI_SetPV
This function block sets the Present_Value of an Analog Input BACnet Object.

It takes as input the value to be written on the Present_Value and, using the passed BACnet
Object pointer, it writes the value on the BACnet Object and gives back the Present_Value as
output.

Context of use
Note that the logic value to be written on the Present_Value of an Analog Input BACnet Object
can be of any kind, provided that the requirements regarding the data format are satisfied. E.g. it
can be the value of a physical input, a physical Output, a generic IEC variable, etc.
The wording Input in the name of this BACnet Object underlines that this object accepts only
inputs from the IEC and cannot write on the IEC environment; therefore, it is a BACnet object
which can be only read.

Present Value Update
The present value update can be forced by setting xLocalPV_Upd to TRUE, which by default is
set to FALSE.
In case this option is set to FALSE or not configured (as in the implementation example below),
the Present Value update must be managed by using the BACnet_PVUpdPr function block.

Inputs
Name Type Description

xEn BOOL

Used to set the visibility of the BACnet Object. If xEn =
FALSE, It will set Out_Of_Service to TRUE, but iValue
or rValue will still be written on the PV and passed to
the rPV output.

ptrAI_BACnet @BACNET_ANALOG_VALUE Pointer to the Analog Input BACnet Object (use ADR
function).

iValue INT
INT value to be written in PV. If iValue = 32767, it is
disabled and rValue is used to set the PV instead. It is
multiplied by rScaler to calculate the PV.

rValue REAL REAL Value to be written in PV. Enabled only if iValue
= 32767. It is multiplied by rScaler to calculate the PV.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 21

rScaler REAL
Scaling factor. Default is 1.0. It cannot be 0.0. NOTE: it
is multiplied by the iValue or the rValue to determine
the PV.

xLocalPV_Upd BOOL Forces the local PV Update of the interested BACnet
variable. By default, it is set to FALSE.

Outputs
Name Type Description

rPV REAL It returns the Present Value.

wStatus WORD
Bit 0: OK (IEC code operating properly).
Bit 1: Out Of Service.
Bit 2: Configuration Error.

FB Implementation Example
The following image shows an example of implementation of the BACnet_AI_SetPV FB. The
purpose is to write the INT value of the Analog Output 2 (AO2) into the BACnet Object
AI1_Template.

In this way, the value of the AO2 will be available to be read by a supervisor, which can access it
by reading the PV of the AI1_Template.

Note that also an AI can be made available through a BACnet AI Object. This is true as well for
any kind of variable, whose value the user is interested to read from a supervisor.

2.4.4. BACnet_RelDef_AV_link_*EE

2.4.4.1. BACnet_RelDef_AV_link_iEE
This function block allows to link an INT EEPROM parameter to a BACnet Analog Value Object.
It can be used to implement BACnet in either new or existing projects, where an EEPROM
parameter has to be kept aligned with a BACnet Analog Value.
The FB writes and reads the Relinquish_Default attribute of the BACnet Object to keep it
synchronized with the EEPROM parameter, considered that it is scaled (multiplied by) using the
rScaler and re-scaled back when the PV is given as output of this FB.

The main inputs of this FB are the BACnet Object address ptrAV_BACnet, the address of the
EEPROM parameter ptr_iEE and the working mode usiMode.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 22

Working Mode
The FB operation depends on the usiMode value. It can be:

0: the EEPROM parameter is linked to the Relinquish Default and they get updated both
ways (default);

1: this mode works as the mode 0, but in addition, when the EEPROM parameter is
changed from the PLC side, the Priority Array is cleared (filled with null);

2: in this mode:
‒ a change in PV updates the EEPROM parameter;
‒ a change in the EEPROM parameter originating from the PLC side updates the

Relinquish Default and the Priority Array is cleared (filled with null);
The mode 2 does not require necessarily to show the Present Value and the
EEPROM parameter on the HMI, but allows to show only the EEPROM parameter,
as the PV Is always equal to the EE parameter.
NOTE: only 100.000 value changes are guaranteed on each EEPROM location.
Therefore, the expected reliability of an EEPROM parameter has to be determined
also based on the frequency with which BACnet supervisors write diverse values
on the Priority Array.
See §4.1.1 for further details.

usiMode EE updated on
variation of:

an EE variation
updates:

PrArr is cleared on EE
PLC side variation:

val to show
on HMI

0 RelDef RefDef NO 2

1 RelDef RefDef YES, all 2

2 PV RefDef YES, all 1

Note 1: consider the effect of your choice when selecting the Mode. This has an impact on the
prioritization between the BACnet supervisor and the PLC (when an EEPROM parameter is
changed from the PLC/HMI).

Note 2:
• If you use the FB link in mode 2, it is not required to connect the iPV_scaled output, as

the EEPROM parameter will be always aligned with the PV and it is convenient to use
directly the EEPROM parameter in the IEC code.

• If you use mode 0 or mode 1, the iPV_scaled has to be used in the IEC code. In this case,
note that if the link FB is called in a background task, it can be possible that a timed task
using the iPV_scaled will receive a wrong value during the first executions, if the link FB
instanced in the background task has not been executed yet for the first time. Therefore,
if the link FB is called in a background task, it is important to initialize the global variable
connected to the iPV_scaled output in an init task, by setting it equal to the EEPROM
parameter. If the link FB is called in a timed task instead, this initialization is not required,
but it is important to run that task before the other timed tasks that use the iPV_scaled.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 23

Priority Array Clear option On Demand
By changing the xPrArrClear_OD input from FALSE to TRUE, the Priority Array is cleared (filled
with null values). This is a way to regain control over BACnet when requested. This can be useful
in case the mode 0 is used and the user wants to restore the HMI local control.
The input has to be manually reset to FALSE after each use of this functionality.

Present Value Update
The present value update can be forced by setting xLocalPV_Upd to TRUE, which by default is
set to FALSE.
In case this option is set to FALSE or not configured (as in the implementation example below),
the Present Value update must be managed by using the BACnet_PVUpdPr function block.

Out-of-range writes and Reliability attribute
The inputs iRelMin and iRelMax allow to limit the value that the EEPROM parameter can
assume and will be used to saturate the Relinquish in case the limits are exceeded. This avoids
out-of-range writes from the supervisor side.

• In case of an out-of-range write from the supervisor on Relinquish, this write will not be
accepted (the EEPROM does not get updated with the written value) and the value which
is present in the EEPROM will be restored on the Relinquish. The Reliability
attribute does not get changed in this case by the IEC code.

• In case of an out-of-range write from the supervisor on the Priority_Array, which will
cause an out-of-range Present_Value, the output of the FB (iPV_scaled) will be
saturated using the scaled iRelMin (if lower than it) or the iRelMax (if higher than it)
and the Reliability attribute of the BACnet Object will be set to
RELIABILITY_UNDER_RANGE in the former case and to RELIABILITY_OVER_RANGE
in the latter one.
The Reliability is restored to RELIABILITY_NO_FAULT_DETECTED once the
Present_Value gets back into the limits.

Note that iRelMin and iRelMax are both scaled by multiplying them by the rScaler before
using them for the comparisons.

Inputs
Name Type Description

xEn BOOL

Used to set the visibility of the BACnet Object. If xEn =
FALSE, It will set Out_Of_Service to TRUE, but iEE
will still be written on the RelDef and passed to the
iPV_scaled output.

ptrAV_BACnet @BACNET_ANALOG_VALUE Analog Value Object Address (use ADR function)

ptr_iEE @INT EEPROM Parameter Address (use ADR function)

iRelMin INT Lower limit for Relinquish Default in INT. It is scaled by
multiplying it by the rScaler.

iRelMax INT Higher limit for Relinquish Default in INT. It is scaled
by multiplying it by the rScaler.

rScaler REAL Scaling factor. Default is 1.0. It cannot be 0.0.

xLocalPV_Upd BOOL Forces the local PV Update of the interested BACnet
variable. By default, it is set to FALSE.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 24

usiMode USINT

Mode 0: EE <-> RelDef. Mode 1: as 0 + Clear PrArr
On Change from PLC. Mode 2: PV -> EE, EE ->
RelDef + Clear PrArr On Change from PLC (max
100.000 writes on EE).

xPrArrClear_OD BOOL
PrArr Clear On Demand. Only on transition FALSE ->
TRUE, it clears the Priority Array. It requires an
external reset to FALSE.

Outputs
Name Type Description

iPV_scaled INT Scaled INT Present Value

wStatus WORD
Bit 0: OK (IEC code operating properly). Bit 1: Out Of
Service. Bit 2: Configuration Error. Bit 4: Priority Active
(override from supervisor).

xPriorityActive BOOL It takes trace of eventual overrides from the Supervisor
(which does it by writing in the PriorityArray).

FB Implementation Example
The following image shows an example of implementation of the
BACnet_RelDef_AV_link_iEE FB.

The purpose is to implement the BACnet protocol in an existing project where the setpoint
parameter, which is in EEPROM, has been renamed from iSetPoint to iSetPoint_E2 and is
now passed to the EEPROM pointer using the ADR function.

A new global variable has been created using the old name of the EEPROM parameter, which
was iSetPoint, and it is used as output of this function block, so that it will keep its value
updated.
Therefore, all the instances of the IEC code where the old EEPROM parameter iSetPoint was
used will not need to be changed, as the new global variable has the same name the EEPROM
parameter had.
The working mode usiMode has to be selected according to how the developer wants to manage
the priorities between the PLC side and the BACnet side. Have a look at the Working Mode
paragraph reported above for further details.
In this example, xLocalPV_Upd is not connected because for the PV update the
BACnet_PVUpdPr function block is used. In case BACnet_PVUpdPr is not used, you should
connect a variable to xLocalPV_Upd and set it to TRUE.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 25

2.4.4.2. BACnet_RelDef_AV_link_rEE
This function block allows to link a REAL EEPROM parameter to a BACnet Analog Value Object.
It operates as the BACnet_RelDef_AV_link_iEE function block, with the exception that the pointed
EEPROM parameter and the PV output will be of REAL data type instead of INT. Refer to the
BACnet_RelDef_AV_link_iEE chapter for information about its functionalities and how to
implement it.

2.4.4.3. BACnet_RelDef_AV_link_uiEE
This function block allows to link an UINT EEPROM parameter to a BACnet Analog Value Object.
It operates as the BACnet_RelDef_AV_link_iEE function block, with the exception that the pointed
EEPROM parameter and the PV output will be of UINT data type instead of INT. Refer to the
BACnet_RelDef_AV_link_iEE chapter for information about its functionalities and how to
implement it.

2.4.5. BACnet_BI_SetPV
This function block sets the Present_Value of a Binary Input BACnet Object.

It takes as input the value to be written on the Present_Value and, using the passed BACnet
Object pointer, it writes the value on the BACnet Object Priority_Array[15]. The output is
equal to the input passed to the FB and does not come from the BACnet Object attributes.
Note: by setting the xClearAlways input to TRUE, your application may result being not 100%
compliant with the BTL standard.

Context of use
Note that the value to be written on the Present_Value of a Binary Input BACnet Object can be
of any kind, provided that the requirements regarding the data format are satisfied. E.g. it can be
a Digital Input, a Digital Output, a generic Boolean IEC variable, etc.
The wording Input in the name of this object underlines that this object accepts only inputs from
the IEC and cannot write on the IEC environment; therefore, it is a BACnet object which can only
read.

Present Value Update
The present value update can be forced by setting xLocalPV_Upd to TRUE, which by default is
set to FALSE.
In case this option is set to FALSE or not configured (as in the implementation example below),
the Present Value update must be managed by using the BACnet_PVUpdPr function block.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 26

Inputs
Name Type Description

xEn BOOL

Used to set the visibility of the BACnet Object. If xEn =
FALSE, It will set Out_Of_Service to TRUE, but
xValue will still be written on the Priority_Array[15] and
passed to the xPV_current output.

ptrBI_BACnet @BACNET_BINARY_VALUE Binary Value Object Address (use ADR function)

xValue BOOL EEPROM Parameter Address (use ADR function)

xLocalPV_Upd BOOL Forces the local PV Update of the interested BACnet
variable. By default, it is set to FALSE.

xClearAlways BOOL
If TRUE, the PrArr is cleared at each execution, if
required, in order for the Present_Value to reflect the
Input Value. Default if FALSE.

Outputs
Name Type Description

xPV_current BOOL BOOL Present Value

wStatus WORD
Bit 0: OK (IEC code operating properly). Bit 1: Out Of
Service. Bit 2: Configuration Error. Bit 4: Priority Active
(override from supervisor).

FB Implementation Example
The following image shows an example of implementation of the BACnet_BI_SetPV FB. The
purpose is to write the BOOL value of the xOutput_Cooling variable into the BACnet Object
BI1_OutputCooling.

In this way, the value of the xOutput_Cooling will be available to be read by a supervisor, which
can access it by reading the PV of the BI1_OutputCooling.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 27

2.4.6. BACnet_RelDef_BV_link_xEE
This function block allows to link a BOOL EEPROM parameter to a BACnet Binary Value Object.
It can be used to implement BACnet in either new or existing projects, where an EEPROM
parameter has to be kept aligned with a BACnet Analog Value.
The FB writes and reads the Relinquish_Default attribute of the BACnet Object to keep it
synchronized with the EEPROM parameter.

The main inputs of this FB are the BACnet Object address ptrBV_BACnet, the address of the
EEPROM parameter ptr_xEE and the working mode usiMode.

Working Mode
The FB operation depends on the usiMode value. It can be:

0: the EEPROM parameter is linked to the Relinquish Default and they get updated both
ways (default);

1: this mode works as the mode 0, but in addition, when the EEPROM parameter is
changed from the PLC side, the Priority Array is cleared (filled with null);

2: in this mode:
‒ a change in PV updates the EEPROM parameter;
‒ a change in the EEPROM parameter originating from the PLC side updates the

Relinquish Default and the Priority Array is cleared (filled with null);
The mode 2 does not require necessarily to show the Present Value and the
EEPROM parameter on the HMI, but allows to show only the EEPROM parameter,
as the PV Is always equal to the EE parameter.
NOTE: only 100.000 value changes are guaranteed on each EEPROM location.
Therefore, the expected reliability of an EEPROM parameter has to be determined
also based on the frequency with which BACnet supervisors write diverse values
on the Priority Array.
See §4.1.1 for further details.

usiMode EE updated on
variation of:

an EE variation
updates:

PrArr is cleared on EE
PLC side variation:

val to show
on HMI

0 RelDef RefDef NO 2

1 RelDef RefDef YES, all 2

2 PV RefDef YES, all 1

Note 1: consider the effect of your choice when selecting the Mode. This has an impact on the
prioritization between the BACnet supervisor and the PLC (when an EEPROM parameter is
changed from the PLC/HMI).

Note 2:
• If you use the FB link in mode 2, it is not required to connect the xPV_current output, as

the EEPROM parameter will be always aligned with the PV and it is convenient to use
directly the EEPROM parameter in the IEC code.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 28

• If you use mode 0 or mode 1, the xPV_current has to be used in the IEC code. In this
case, note that if the link FB is called in a background task, it can be possible that a timed
task using the xPV_current will receive a wrong value during the first executions, if the link
FB instanced in the background task has not been executed yet for the first time.
Therefore, if the link FB is called in a background task, it is important to initialize the global
variable connected to the xPV_current output in an init task, by setting it equal to the
EEPROM parameter. If the link FB is called in a timed task instead, this initialization is not
required, but it is important to run that task before the other timed tasks that use the
xPV_current.

Priority Array Clear option On Demand
By changing the xPrArrClear_OD input from FALSE to TRUE, the Priority Array is cleared (filled
with null values). This is a way to regain control over BACnet when requested. This can be useful
in case the mode 0 is used and the user wants to restore the HMI local control.
The input has to be manually reset to FALSE after each use of this functionality.

Present Value Update
The present value update can be forced by setting xLocalPV_Upd to TRUE, which by default is
set to FALSE.
In case this option is set to FALSE or not configured (as in the implementation example below).

Inputs
Name Type Description

xEn BOOL

Used to set the visibility of the BACnet Object. If xEn =
FALSE, It will set Out_Of_Service to TRUE, but xEE will
still be written on the RelDef and passed to the
xPV_current output.

ptrBV_BACnet @BACNET_BINARY_VALUE Binary Value Object Address (use ADR function)

ptr_xEE @BOOL EEPROM Parameter Address (use ADR function)

xLocalPV_Upd BOOL Forces the local PV Update of the interested BACnet
variable. By default, it is set to FALSE.

usiMode USINT

Mode 0: EE <-> RelDef. Mode 1: as 0 + Clear PrArr On
Change from PLC. Mode 2: PV -> EE, EE -> RelDef +
Clear PrArr On Change from PLC (max 100.000 writes on
EE).

xPrArrClear_OD BOOL
PrArr Clear On Demand. Only on transition FALSE ->
TRUE, it clears the Priority Array. It requires an external
reset to FALSE.

Outputs
Name Type Description

xPV_current BOOL BOOL Present Value

wStatus WORD
Bit 0: OK (IEC code operating properly). Bit 1: Out Of
Service. Bit 2: Configuration Error. Bit 4: Priority Active
(override from supervisor).

xPriorityActive BOOL It takes trace of eventual overrides from the Supervisor
(which does it by writing in the PriorityArray).

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 29

FB Implementation Example
The following image shows an example of implementation of the
BACnet_RelDef_BV_link_xEE FB.

The purpose is to implement the BACnet protocol in an existing project where the machine state,
which is in EEPROM, has been renamed from xMachineState to xMachineState_E2 and is
now passed to the pointer to the EEPROM using the ADR function.

A new global variable has been created using the same name of the old EEPROM parameter,
which was xMachineState and it is used as output of this function block, so that it will keep its
value updated.
Therefore, all the instances of the IEC code where the old EEPROM parameter xMachineState
was used will not need to be changed, as the new global variable has the same name the
EEPROM parameter had.
The working mode usiMode has to be selected according to how the developer wants to manage
the priorities between the PLC side and the BACnet side. Have a look at the Working Mode
paragraph reported above for further details.
In this example, xLocalPV_Upd is not connected because for the PV update the
BACnet_PVUpdPr function block is used. In case BACnet_PVUpdPr is not used, you should
connect a variable to xLocalPV_Upd and set it to TRUE.

2.4.7. BACnet_MSI_*SetPV

2.4.7.1. BACnet_MSI_diSetPV
This function block sets the Present_Value of a Multi State Input BACnet Object (DINT input)..

It takes as input diValue, which is the value that, scaled by the iOffset, has to be written on
the Present_Value of the BACnet Object passed through a pointer. The input is a DINT value.
Check the range limitations given by this setting before using this variant of the MSI SetPV
FBs Family.
It gives back the Present_Value as output.

Context of use
The wording Input in the name of this object underlines that this object accepts only inputs from
the IEC and cannot write on the IEC environment; therefore, it is a BACnet object which can only
read.

Present Value Update
The present value update can be forced by setting xLocalPV_Upd to TRUE, which by default is
set to FALSE.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 30

In case this option is set to FALSE or not configured (as in the implementation example below),
the Present Value update must be managed by using the BACnet_PVUpdPr function block.

Inputs
Name Type Description

xEn BOOL

Used to set the visibility of the BACnet Object. If
xEn = FALSE, It will set Out_Of_Service to TRUE,
but diValue will still be written on the PV and
passed to the udiPV output.

ptrMSI_BACnet @BACNET_MULTI_STATE_VALUE Pointer to the Multi State Input BACnet Object (use
ADR function).

diValue DINT

DINT Value to be written in PV, scaled by summing
the iOffset to it. Its value must be such that the sum
diValue + iOffset is in the range 1…
Number_Of_States.

iOffset INT INT offset that is summed to the input value.

iWrongInputValue INT

Value that is written on the Present Value in case of
wrong input value (outside the allowed range of the
object). Its value MUST be in the range 1 ...
Number_Of_States.

xLocalPV_Upd BOOL Forces the local PV Update of the interested
BACnet variable. By default, it is set to FALSE.

Outputs
Name Type Description

udiPV UDINT Returns the Present Value of the MSI BACnet
Object.

wStatus WORD
Bit 0: OK (IEC code operating properly). Bit 1: Out
Of Service. Bit 2: Configuration Error. Bit 3:
BACnet not aligned with input value.

FB Implementation Example
The following image shows an example of implementation of the BACnet_MSI_diSetPV FB.
The purpose is to write the DINT value of the diOperating_State status variable into the
BACnet Object MSI_OperatingState, which is an Enumerative.

In this way, it is possible to read the diOperating_State of the machine from a supervisor, by
reading the PV of the MSI_OperatingState.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 31

2.4.7.2. BACnet_MSI_udiSetPV
This function block sets the Present_Value of a Multi State Input BACnet Object (UDINT input).

Check the range limitations given by this setting before using this variant of the MSI SetPV
FBs Family.
It operates as the BACnet_MSI_diSetPV function block, with the exception that the input will be
of UDINT data type instead of DINT. Refer to the BACnet_MSI_diSetPV chapter for information
about its functionalities and how to implement it.

2.4.7.3. BACnet_MSI_usiSetPV
This function block sets the Present_Value of a Multi State Input BACnet Object (USINT input).

Check the range limitations given by this setting before using this variant of the MSI SetPV
FBs Family.
It operates as the BACnet_MSI_diSetPV function block, with the exception that the input will be
of USINT data type instead of DINT. Refer to the BACnet_MSI_diSetPV chapter for information
about its functionalities and how to implement it.

2.4.8. BACnet_RelDef_MV_link_*EE

2.4.8.1. BACnet_RelDef_MV_link_iEE
This function block allows to link an INT EEPROM parameter to a BACnet Multi State Value
Object.
It can be used to implement BACnet in either new or existing projects, where an EEPROM
parameter has to be kept aligned with a BACnet Multi State Value.
The FB writes and reads the Relinquish_Default attribute of the BACnet Object to keep it
synchronized with the EEPROM parameter, considered that it is scaled (summed to) using the
iOffset and re-scaled back when the PV is given as output of this FB.

The main inputs of this FB are the BACnet Object address ptrMV_BACnet, the address of the
EEPROM parameter ptr_iEE, the offset (iOffset) and the value to be written on the PV in
case of wrong input value (iWrongLinkValue).

Check the range limitations given by this setting before using this variant of the MSI SetPV
FBs Family. A TO_UDINT conversion takes place before writing the INT number on the
Relinquish.

Working Mode
The FB operation depends on the usiMode value. It can be:

0: the EEPROM parameter is linked to the Relinquish Default and they get updated both
ways (default);

1: this mode works as the mode 0, but in addition, when the EEPROM parameter is
changed from the PLC side, the Priority Array is cleared (filled with null);

2: in this mode:
‒ a change in PV updates the EEPROM parameter;
‒ a change in the EEPROM parameter originating from the PLC side updates the

Relinquish Default and the Priority Array is cleared (filled with null);

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 32

The mode 2 does not require necessarily to show the Present Value and the
EEPROM parameter on the HMI, but allows to show only the EEPROM parameter,
as the PV Is always equal to the EE parameter.
NOTE: only 100.000 value changes are guaranteed on each EEPROM location.
Therefore, the expected reliability of an EEPROM parameter has to be determined
also based on the frequency with which BACnet supervisors write diverse values
on the Priority Array.
See §4.1.1 for further details.

usiMode EE updated on
variation of:

an EE variation
updates:

PrArr is cleared on EE
PLC side variation:

val to show
on HMI

0 RelDef RefDef NO 2

1 RelDef RefDef YES, all 2

2 PV RefDef YES, all 1

Note 1: consider the effect of your choice when selecting the Mode. This has an impact on the
prioritization between the BACnet supervisor and the PLC (when an EEPROM parameter is
changed from the PLC/HMI).

Note 2:
• If you use the FB link in mode 2, it is not required to connect the iPV_current output, as

the EEPROM parameter will be always aligned with the PV and it is convenient to use
directly the EEPROM parameter in the IEC code.

• If you use mode 0 or mode 1, the iPV_current has to be used in the IEC code. In this
case, note that if the link FB is called in a background task, it can be possible that a timed
task using the iPV_current will receive a wrong value during the first executions, if the link
FB instanced in the background task has not been executed yet for the first time.
Therefore, if the link FB is called in a background task, it is important to initialize the global
variable connected to the iPV_current output in an init task, by setting it equal to the
EEPROM parameter. If the link FB is called in a timed task instead, this initialization is not
required, but it is important to run that task before the other timed tasks that use the
iPV_current.

Priority Array Clear option On Demand
By changing the xPrArrClear_OD input from FALSE to TRUE, the Priority Array is cleared (filled
with null values). This is a way to regain control over BACnet when requested. This can be useful
in case the mode 0 is used and the user wants to restore the HMI local control.
The input has to be manually reset to FALSE after each use of this functionality.

Present Value Update
The present value update can be forced by setting xLocalPV_Upd to TRUE, which by default is
set to FALSE.
In case this option is set to FALSE or not configured (as in the implementation example below),
the Present Value update must be managed by using the BACnet_PVUpdPr function block.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 33

Out-of-range writes and Reliability attribute
The value to be written on the PV must be in the range [1 ... Number_Of_States]. It is calculated
by the summing the value in EEPROM to the iOffset.

In case it is outside the allowed range, the iWrongLinkValue is written in place of it and the
Reliability attribute is set to RELIABILITY_UNRELIABLE_OTHER.

The Reliability is restored to RELIABILITY_NO_FAULT_DETECTED once the value to be
written gets back into the limits.
Note that iWrongLinkValue must be in the range [1 ... Number_Of_States].

Inputs
Name Type Description

xEn BOOL
Used to set the visibility of the BACnet Object. If xEn = FALSE, It
will set Out_Of_Service to TRUE, but iEE will still be written on the
RelDef and passed to the iPV_current output.

ptrMV_BACnet @BACNET_MULTI_
STATE_VALUE Multi State Value Object Address (use ADR function)

ptr_iEE @INT EEPROM Parameter Address (use ADR function)

iOffset INT INT Offset that is summed to the EEPROM value.

iWrongLinkValue INT
Value that is written on the Present Value in case of wrong input
value (outside the allowed range of the object). Its value MUST be
in the range 1 ... Number_Of_States.

xLocalPV_Upd BOOL Forces the local PV Update of the interested BACnet variable. By
default, it is set to FALSE.

usiMode USINT
Mode 0: EE <-> RelDef. Mode 1: as 0 + Clear PrArr On Change
from PLC. Mode 2: PV -> EE, EE -> RelDef + Clear PrArr On
Change from PLC (max 100.000 writes on EE).

xPrArrClear_OD BOOL PrArr Clear On Demand. Only on transition FALSE -> TRUE, it
clears the Priority Array. It requires an external reset to FALSE.

Outputs
Name Type Description

iPV_current INT INT Present Value

wStatus WORD
Bit 0: OK (IEC code operating properly). Bit 1: Out Of Service. Bit
2: Configuration Error. Bit 3: BACnet not aligned with input value.
Bit 4: Priority Active (override from supervisor).

xPriorityActive BOOL It takes trace of eventual overrides from the Supervisor (which
does it by writing in the PriorityArray).

FB Implementation Example
The following image shows an example of implementation of the
BACnet_RelDef_MV_link_iEE FB.

The purpose is to implement the BACnet protocol in an existing project where the operating mode
of the machine is stored in an EEPROM parameter. This last one has been renamed from
iSeasonMode to iSeasonMode_E2 and is now passed to the pointer to the EEPROM using the
ADR function block. The iSeasonMode variable is an Enumerative.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 34

A new global variable has been created using the same name of the old EEPROM parameter,
which was iSeasonMode and it is used as output of this function block, so that it will keep its
value updated.
Therefore, all the instances of the IEC code where the old EEPROM parameter iSeasonMode
was used will not need to be changed, as the new global variable has the same name the
EEPROM parameter had.
In this example, the value which will be written in case of wrong inputs (iWrongLinkValue) is
2, which corresponds to the “Auto” setting of the Operating Mode.
The working mode usiMode has to be selected according to how the developer wants to manage
the priorities between the PLC side and the BACnet side. Have a look at the Working Mode
paragraph reported above for further details.
In this example, xLocalPV_Upd is not connected because the BACnet_PVUpdPr function block
is used for the PV update. In case BACnet_PVUpdPr is not used, you should connect a variable
to xLocalPV_Upd and set it to TRUE.

2.4.8.2. BACnet_RelDef_MV_link_rEE
This function block allows to link a REAL EEPROM parameter to a BACnet Multi State Value
Object.
Check the range limitations given by this setting before using this variant of the MSI SetPV
FBs Family. A TO_UDINT conversion takes place before writing the REAL number on the
Relinquish.
It operates as the BACnet_RelDef_MV_link_iEE function block, with the exception that the
pointed EEPROM parameter and the PV output will be of REAL data type instead of INT. Refer
to the BACnet_RelDef_MV_link_iEE chapter for information about its functionalities and how to
implement it.

2.4.8.3. BACnet_RelDef_MV_link_udiEE
This function block allows to link an UDINT EEPROM parameter to a BACnet Multi State Value
Object.
It operates as the BACnet_RelDef_MV_link_iEE function block, with the exception that the
pointed EEPROM parameter and the PV output will be of UDINT data type instead of INT. Refer
to the BACnet_RelDef_MV_link_iEE chapter for information about its functionalities and how to
implement it.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 35

2.4.8.4. BACnet_RelDef_MV_link_uiEE
This function block allows to link a UINT EEPROM parameter to a BACnet Multi State Value
Object.
It operates as the BACnet_RelDef_MV_link_iEE function block, with the exception that the
pointed EEPROM parameter and the PV output will be of UINT data type instead of INT. Refer to
the BACnet_RelDef_MV_link_iEE chapter for information about its functionalities and how to
implement it.

2.4.8.5. BACnet_RelDef_MV_link_usiEE
This function block allows to link a USINT EEPROM parameter to a BACnet Multi State Value
Object.
It operates as the BACnet_RelDef_MV_link_iEE function block, with the exception that the
pointed EEPROM parameter and the PV output will be of USINT data type instead of INT. Refer
to the BACnet_RelDef_MV_link_iEE chapter for information about its functionalities and how to
implement it.

2.4.9. BACnet_ObjID
This function calculates the BACnet Object Identifier given the BACnet node number and subnet
value.
It is suggested to store the two parameters required by this function in the EEPROM of the device.
This function has to be called in the Init task in order to restore the Device Object Identifier after
each device restart.
In this way, the BACnet Object Identifier will be kept always the same, even after a restart.
An implementation example of this function is provided in the §3 BACnet Application Project
Sample.

Inputs
Name Type Description

uiBACnet_ID UINT BACnet ID value

usiBACnet_Subnet USINT BACnet Subnet value

Outputs
Name Type Description

BACnet_ObjID UDINT BACnet Object Identifier

2.4.10. BACnet_ObjID_De_store_EE
This function block enables two functionalities:

1. Update the EEPROM parameters containing the Device ID and Device Subnet, which
together define the BACnet Device Object ID, after a change from the supervisor side.

2. Detect a local change of the Device ID and Device Subnet EEPROM parameters and
provide the info that a reboot is required for changes to take effect.

It is supposed to be used together with the BACnet_ObjID function, that will have to be called
into a program assigned to the Init task.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 36

Inputs
Name Type Description

xEn BOOL Used to enable the functionalities of the FB

ptrDe_BACnet @BACNET_DEVICE Device Object Address (use ADR function)

ptr_uiBACnet_ID @UINT BACnet_ID EEPROM Parameter Address (use ADR
function)

ptr_usiBACnet_Subnet @USINT BACnet_Subnet EEPROM Parameter Address (use
ADR function)

Outputs
Name Type Description

xObjID_Changed BOOL BOOL that states if the ObjID has been changed from
the BACnet side

xRebootReq BOOL BOOL that states if a reboot is required after an
EEPROM parameters change from the PLC side

FB Implementation Example
The following image shows an example of implementation of the BACnet_ObjID_De_store_EE
FB.

2.4.11. BACnet_UdAsReal_read
This function allows you to read a REAL value which is stored as UDINT in a BACnet attribute.
Passing the pointer to the UDINT variable/attribute where a REAL value has been written instead,
it performs the data format equivalence and gives back as output the REAL value that has
originally been written on the variable/attribute.

Inputs
Name Type Description

ptr_udi @UDINT Pointer to the BACnet attribute that has to be read.

Outputs
Name Type Description

BACnet_UdAsReal_read REAL Original REAL value.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 37

2.4.12. BACnet_UdAsReal_write
This function allows you to write a REAL value which is stored as UDINT in a BACnet attribute.
Passing the pointer to the UDINT variable/attribute where a REAL value has to be written instead,
it performs the data format equivalence and writes the rValue. If the BACnet attribute is set to be
in EEPROM, xE2 must be TRUE.
The returned value is the attribute value in REAL.

Input
Name Type Description

ptr_udi @UDINT Pointer to the BACnet attribute.

rValue REAL Value to be written.

xE2 BOOL Used to define if the BACnet attribute is in EEPROM or not.
TRUE if it is, FALSE if it is not.

Outputs
Name Type Description

BACnet_UdAsReal_write REAL Value which is stored in the UDINT attribute.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 38

2.4.13. BACnet_udiValue_link_rEE
This function block allows to link a REAL EEPROM parameter to the value of an UDINT BACnet
attribute.
It can be used to implement BACnet in either new or existing projects, where you would like to
keep a BACnet UDINT attribute aligned with a REAL EEPROM parameter.
The FB writes and reads the attribute value of a BACnet Object to keep it synchronized
with the EEPROM parameter. No scaler is used.
The main inputs of this FB are:

• The UDINT value address ptrBACnet_udiAttribute. This is not the address of the
BACnet Object, but the address of a specific attribute of it.

• The address of the EEPROM parameter ptr_rEE..
This FB can either be called in background or in timed, depending on the requirements of your
application. Note that until its first execution, the value of the attribute (e.g. a Schedule Default)
will not be correctly aligned. Therefore, in case you use the attribute in a timed task it is important
either:

• to call an instance of the FB also in the Init task, when it is called in a background task;
• if the FB is called in a timed task, this has to be set before the other timed tasks which use

the linked attribute.

Out-of-range writes
The inputs rRelMin and rRelMax allow to limit the value that the EEPROM parameter can
assume and will be used to saturate the attribute value in case the limits are exceeded.
This avoids out-of-range writes from the supervisor side.
In case of an out-of-range write from the supervisor on the attribute value, this write will not
be accepted (the EEPROM does not get updated with the written value) and the value which is
present in the EEPROM will be restored on the attribute value.

FB Implementation Example
The following image shows an example of implementation of the BACnet_udiValue_link_rEE
FB.
The purpose is to link the rSetpoint_DefSch EEPROM parameter to the Schedule_Default
value of the Sc_Setpoint_REAL_Schedule Schedule BACnet Object.
Note that this function block can be used for every type of BACnet Object.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 39

3. BACnet Application Project Sample

BACnet Application Project Sample

3.1. Overview
The current chapter guides the user through the implementation of the BACnet protocol into a
sample project, by using the BACnet Addons library.
An existing application will be used for this scope. It is about a simple control of a machine with a
thermostat using a regulation based on hysteresis.

3.2. Sample thermostat application
The baseline application is the existing one, where the BACnet protocol is not yet implemented
at all. In this paragraph an overview of the its contents is carried out.

3.2.1. hysteresis_ST
This function block contains the setpoint control based on hysteresis.
The inputs are the measured ambient temperature, the setpoint value and the differentiation.
A check for the probe disconnection is also implemented.

3.2.2. Thermostat
The Thermostat program executes the hysteresis_ST function block. It passed the temperature
to it based on the AI1 and on the state of the machine (if the machine is set to off, an override
temperature will be passed).

3.2.3. usiOperating_State
The usiOperating_State IEC variable represents the operating state of the machine while it is on,
which could be either active (“Running”), in standby (“Idle”), in defrost (“Defrost”) or in a secure
operational status after a certain alarm has been raised (“Safety”).

This is normally an output of the control algorithm on the IEC side and should not be changed
manually.

Just for the purpose of testing, in this project sample it has been chosen to make it editable from
the HMI, so that you could see the effect of its changes on the BACnet side.

3.2.4. Other status variables and EEPROM parameters
The usiSeasonMode represents the working mode based on the season (Summer, Winter, Auto).
It is just an EEPROM parameter used to show how a MSV BACnet object could be setup.

The udiOperating_Mode sets the working mode based on the room occupation (Normal, Comfort,
Not occupied). It is just a status variable used to show what could be the output of a Schedule
BACnet Object.

3

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 40

The xNonWorkingDay gives a feedback about whether a day is a working day or not. It will be
used just to show how a Calendar BACnet Object could be used.

3.3. BACnet Objects Templates
Together with the library, 12 templates of BACnet Objects are attached. You will find already
defined attributes, based on what is of common use for that Object. The use of the templates is
described in the following chapters, as they are used to implement the BACnet protocol in the
existing project sample.
In the templates, for the Objects which have the Relinquish_Default attribute, it is set to be
stored in the EEPROM. This is not necessary in case you link the attribute to an EEPROM
parameter and therefore you could disable the EEPROM option of the attribute in this case.

3.4. Implementing the BACnet protocol into an existing application
This chapter contains the step-by-step tutorial for implementing the BACnet protocol into the
sample thermostat application.

3.4.1. Load the BACnet_IEC.PLL and BACnet_Addons.plclib libraries
Before adding an object, it is required to connect to the BACnet_IEC.pll library.
Open the Library manager and add the library, which is located in the FreeStudio installation
folder (..\Catalog\FreeAdvance\PLC or ..\Catalog\FreeEvolution\PLC).

Alternatively, if you add a new BACnet Device object without adding the library before, you will
be asked if you want to add the BACnet_IEC library. Answering Yes, you will have Application
get the library automatically added for you.

From the same window, load also the BACnet_Addons.plclib.

3.4.2. Add the Device BACnet Object
In Resources, add a new Device BACnet Object, with the name e.g.
BACnet_Device_Thermostat.
The Subnet and the Node number do not have to be specified, as they
are used to determine the Object_Identifier, which will be set-up by
a specific function of the BACnet Addons Library, called in the
BACnet_Setup_Init program (see §3.4.7 HowTo Code the
BACnet_Setup_Init program).
Alternatively, you can define the Device BACnet Object by importing the provided
Device_Template.xml.

3.4.3. Add an Analog Value BACnet Object
Each BACnet Analog Value Object can be defined either manually or by using one of the provided
templates.
In this case, we will add an Analog Value that represents the Temperature SetPoint, which we
will call BAV0_SetCool. For this, we will use the AV_Temp_Template.xml (import it from the
Analog Value Object dropdown menu).

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 41

We will also add an Analog Input that will use to make the Ambient Temperature available on the
BACnet side and for this we will use the AI_Temp_template.xml (import it from the Analog Value
Object dropdown menu). We will call this object BAI0_AmbTemp.

A template to setup a Humidity parameter is also provided.

3.4.4. Add a Binary Value BACnet Object
Each BACnet Binary Value Object can be defined either manually or by using one of the provided
templates.
In this case, we will add a Binary Value that represents the Machine State, which we will call
BBV0_MachineState. For this, we will use the BV_Alarm_Template.xml (import it from the
Binary Value Object dropdown menu), which we will then modify.
Binary Input Object type is not supported and it has to be treated using a Binary Value. We will
add a Binary Value with info which would be normally represented using a Binary Input. To
implement this Binary Value, the provided template (BI_Template.xml) can be used in connection
with the BACnet_BI_SetPV FB.
We will call this object BI1_OutputCooling and it will be used to make the value of the
xOutputCooling variable available on the BACnet side.

3.4.5. Add a Multi State Value BACnet Object
Each BACnet Multi State Value Object can be defined either manually or by using one of the
provided templates.
In this case, we will add a Multi State Value that represents the Mode of the machine based on
the season (Winter, Summer, Auto), which we will call BMSV1_SeasonMode. For this, we will use
the MSV_Template.xml (import it from the Multi State Value Object dropdown menu).
We will also add a Multi State Input, using the MSI_Template and representing Operating State
of the machine (Running, Idle, Defrost, Safety).
We will call this object MSI_OperatState and it will be used to make the value of the
usiOperating_State variable available on the BACnet side.

3.4.6. Define the EEPROM parameters & StatusVars used in the BACnet setup
For the BACnet_ObjID function, it is required to add the parameters n.1 and n.2 in EEPROM.
The parameter n.3 has to be added in EEPROM to define the BACnet Object update timeframe
(measured in 1/10 sec). The BACnet_Subnet limits (Min: 0, Max: 63) must be also defined.
The EEPROM parameters from n.4 to n.9 are used to setup the BBMD functionality (see §3.4.8
HowTo Code the BACnet_BBMD_ReinitDevice program for details).

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 42

Name Device type Appl. type Default Min Max Scale Offset

1 uiBACnet_ID Unsigned 16-bit UINT 1 0

2 usiBACnet_Subnet Unsigned 8-bit USINT 0 63 1 0

3 ui_dt_BACnetUpd_dsec Signed 16-bit UINT 10 1 0

4 BBMD_Ip1 Unsigned 8-bit USINT 0 1 0

5 BBMD_Ip1 Unsigned 8-bit USINT 0 1 0

6 BBMD_Ip1 Unsigned 8-bit USINT 0 1 0

7 BBMD_Ip1 Unsigned 8-bit USINT 0 1 0

8 BBMD_port Unsigned 16-bit UINT 0 1 0

9 BBMD_tmo Unsigned 8-bit USINT 0 1 0

10 xBACnet_Enable Boolean BOOL TRUE 1 0

Define the following Status variables:

Name Device type Appl. type Default Min Max Scale Offset Read only

1 usiBACnet_ReinitDevice Unsigned 8-bit USINT 0 0 2 1 0 FALSE

3.4.7. HowTo Code the BACnet_Setup_Init program
Create a new ST program, name it e.g. BACnet_Setup_Init and assign it to the Init task.

• It is required to restore the BACnet Device Object_Identifier at every boot, in order to
keep the Identifier aligned with the one set in the supervisor.
Call the BACnet_ObjID function, passing the uiBACnet_ID and usiBACnet_Subnet
parameters set in the EEPROM.
In this example, the call to be made is the following:
BACnet_Device_Thermostat.Object_Identifier:=BACnet_ObjID(uiBACnet_ID,usiBACnet_Subnet);

Note that BACnet_Device_Thermostat is the BACnet Device name which we have chosen
in the previous steps. Have a look at the example for further details.

NOTE: the Object_Identifier of each BACnet device MUST be unique in the BACnet
network which the BACnet devices are connected to. The IP address of each device must
also be unique.

• To store the Firmware Revision in the BACnet Device attributes, it is possible to use the
sysMSK and sysVER variables to generate it.
After having defined two local STRING variables (string0 and string1), the Firmware
Revision can be generated and stored in the BACnet Device Object as follows:
string0 := TO_STRING(sysMSK);
string0 := CONCAT(string0,'.');
string1 := TO_STRING(sysVER);
BACnet_Device_Thermostat.Firmware_Revision := CONCAT(string0,string1);

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 43

• The Port_BACnet_IP global variable allows to set the BACnet/IP port number. It can be
accessed from the Device work environment (in All parameters\BACnet) and if it is equal to
0 it sets the default port (47808). In case its value is 65535, it disables the BACnet stack on
the ETH/TCP side (not visible), but it is still running on the PLC side.
By means of the EEPROM parameter xBACnet_Enable, it is possible to set the value of
Port_BACnet_IP to 65535 in case xBACnet_Enable is FALSE, in order to disable the
BACnet protocol.
The code to achieve it is the following:
IF NOT(xBACnet_Enable) AND Port_BACnet_IP<>65535 THEN

(* Force Bacnet Disable*)
xRet := sysWriteParUINT(ADR(Port_BACnet_IP),65535);

END_IF;

• Finally, at the end of the initialization task related to BACnet, set the
sysBACnet_ReinitDevice value to 0, which means no system reset has to be executed
(0=idle), as a command that could be request form the BACnet side. This parameter will be
clarified in the ReinitDevice program (see §3.4.8 HowTo Code the
BACnet_BBMD_ReinitDevice program for details).

3.4.8. HowTo Code the BACnet_BBMD_ReinitDevice program
This program allows to set up the BBMD (Foreign Devices Handling) and to define the Warm
restart and Cold restart procedures which can be triggered by the supervisor (using the
sysBACnet_ReinitDevice variable).

Create a new ST program, name it e.g. BACnet_BBMD_ReinitDevice and assign it to the
Background task.

Paste the following code:
(* BBMD Service *)
(* IP 0.0.0.0 ==> BBMD disabled *)
xRet := sysBACnet_BBMD(BBMD_Ip1,BBMD_Ip2,BBMD_Ip3,BBMD_Ip4,BBMD_port,BBMD_tmo);

(* Reinit Device *)
(* 0=Idle, 1=WARMSTART, 2=COLDSTART; it is set 1 or 2 by DM-RD-B command and must be set to 0 by PLC
application *)

(* The action related to warm and coldstart is defined by the developer.... *)
TonWTD(IN:=(sysBACnet_ReinitDevice<>0),PT:=2000);
IF sysBACnet_ReinitDevice=1 THEN
 (* Watchdog Call - This is just a case, it could be also a "switch off the unit" *)
 IF TonWTD.Q THEN
 bret := sysWD_Background(0);
 END_IF;
 usiBACnet_ReinitDevice := sysBACnet_ReinitDevice;

ELSIF sysBACnet_ReinitDevice=2 THEN
 (* Reload Bacnet default *)
 xRet := sysWriteParBOOL(ADR(sysLoadBACnetE2Defaults),TRUE);
 (* Watchdog Call *)
 IF TonWTD.Q THEN
 bret := sysWD_Background(0);
 END_IF;
 usiBACnet_ReinitDevice := sysBACnet_ReinitDevice;

ELSE
 sysBACnet_ReinitDevice := usiBACnet_ReinitDevice;
END_IF;

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 44

And define the following local variables:
Name Type
1 xRet BOOL
2 TonWTD TON

The BBMD service is configured calling the EEPROM parameters previously defined; no
modification to this code is required.

The second part of the code contains the instructions regarding the ReinitDevice Service. Here
the Application developer can define the list of operations which will be run when the WarmRestart
and the ColdRestart procedures are executed. They are run based on the
sysBACnet_ReinitDevice value (1 for WarmRestart, 2 for ColdRestart). When it is equal to
0, the service is in idle state (not being executed).

The value of the sysBACnet_ReinitDevice variable is normally changed by the supervisor to
trigger a restart, but it can eventually also be modified from the IEC side, by changing the
usiBACnet_ReinitDevice status variable, which is also accessible from ModBUS, as it has
been so defined.

The two restart procedures can contain all the instruction that the developer would like to be
executed and they are naturally application-dependent. For example, in case of a thermostat
application, the SetPoint default could be restored.

3.4.9. HowTo Automate the Present_Value update procedure
The Present_Value of each BACnet Object has to be updated by calling the update function for
each specific type and object.
This can either be done object by object (e.g. enabling the xLocalPV_Upd input on the FB that
is used to implement that BACnet Object) or it can be executed for all the objects together in one
shot. This last option practically automates the Present_Value update procedure and is
implemented using the BACnet_PVUpdPr function block.
Create a new program in FBD language with the name BACnetPVObjUpd_P and assign it to the
Background or to the Timed task. Note that, in case it will be assigned to the Timed task, it is
required to take into consideration the total execution time of the task, which naturally increases
with the number of BACnet objects.

Structure the program as below:

The dt_BACnetUpd_dsec is the EEPROM parameter defined before, which contains the info
about the Present_Value update period in [sec/10]. The wBACnetUpdStat is a WORD, local or
global variable depending on whether the status info about the Present_Value update procedure
is used in the IEC code or not.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 45

If you set up the FB as shown above, the Present_Value will be updated asynchronously (one
object type per time) at each defined uiPrd period, in a rotational sequence.

If you would like to setup a different update strategy, have a look at the FB properties or §2.4.2
BACnet_PVUpdPr.

3.4.10. HowTo Link an EEPROM Parameter to a BACnet Analog Value Object
In this paragraph the procedure of how to implement BACnet for an existing EEPROM parameter
will be explained.
The BACnet AV will be implemented for the EEPROM iSetPoint parameter. The steps to do that
are the following:

1. Rename the EEPROM parameter from iSetPoint to iSetPoint_E2;
2. Create a new global variable (same type as the EEPROM parameter) with the same name

the EEPROM parameter originally had. In our case, it is iSetPoint.
3. Create a new FBD program (e.g. BACnet_Objs_P) and assign it to the Background task.

In the program, call the BACnet_RelDef_AV_link_iEE FB and:
a. use the EEPROM iSetPoint_E2 as input (pass its address to ptr_iEE);
b. use the new iSetPoint global variable as output (connect it to iPV_scaled).

The implementation of what above described is illustrated in the image below.
The BACnet Object which will be linked to the SetPoint EEPROM parameter is the
BAV0_SetCool Analog Value Object.
Define the iRelMin, the iRelMax and the rScaler parameters as constants or as global
variables, in case you need them to be dynamic, assigning the correct default value to them.
The enable variable (xEn) can be used to set the Out_of_Service state and therefore it is proper
to pass a variable to it, instead of a constant value.
The output wSetPoint_BACnet_Status is a WORD, local or global variable depending on whether
the status of FB is used in the IEC code or not.
The usiMode has to be set according to how you would like to manage the priorities between the
IEC and the BACnet side. Read the function block description for more details.
The xClear_OD input will be associated to a procedure that will set it from FALSE to TRUE, and
then restore it to FALSE, in order to clear the Priority Array on demand. The information about
whether the Priority Array is being used is provided by the xPrAct output.
In the project sample, an HMI (Setpoint page) has been added, which allows you to test all
the three available working modes (0, 1 and 2).

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 46

If you have already an HMI in your existing project, read the §3.4.19 EEPROM variable names
and HMI.

3.4.11. HowTo Link an EEPROM Parameter to a BACnet Binary Value Object
In this paragraph we will link the xMachineState EEPROM parameter to the
BBV0_MachineState Binary Value BACnet Object. It represents the state of the machine, which
could be either ON or OFF.
The procedure to follow to implement it is very similar to what seen for the Analog Value (§3.4.10).
You actually will need to:

1. Rename the EEPROM parameter from xMachineState to xMachineState_E2;
2. Create a new global variable (same type as the EEPROM parameter) with the same name

the EEPROM parameter originally had, i.e. xMachineState.
3. Use the FBD program BACnet_Objs_P created in §3.4.10 and insert a new FBD free row

where you will call the BACnet_RelDef_BV_link_xEE FB and:
a. use the EEPROM xMachineState_E2 as input (pass its address to ptr_xEE);
b. use the new xMachineState global variable as output (connect it to xPV_scaled).

The implementation of what above described is illustrated in the image below.
The BACnet Object which will be linked to the xMachineState EEPROM parameter is the
BBV0_MachineState Analog Value Object.
The enable variable (xEn) can be used to set the Out_of_Service state and therefore it is proper
to pass a variable to it, instead of a constant value.
The output wStatus_MachineState is a WORD, local or global variable depending on whether the
status of FB is used in the IEC code or not.
The usiMode has to be set according to how you would like to manage the priorities between the
IEC and the BACnet side. Read the function block description for more details.
The xPrArrClear_BV input will be associated to a procedure that will set it from FALSE to TRUE,
and then restore it to FALSE, in order to clear the Priority Array on demand. The information about
whether the Priority Array is being used is provided by the xPrAct_xMS output.

If you have already an HMI in your existing project, read the §3.4.19 EEPROM variable names
and HMI.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 47

3.4.12. HowTo Configure a Multi State Input BACnet Object
In this paragraph we will configure the MSI_OperatState Multi State Input BACnet Object to be
synchronized with the usiOperating_State IEC variable.
The implementation is relatively simple, as it is just required to call the BACnet_MSI_usiSetPV
FB into a program in Background (e.g. the one used for the other objects: BACnet_Objs_P) and
provide as inputs:

• the value to be written on the BACnet Object (i.e. usiOperating_State);
• the offset, if the value in not in the [1-5] format;
• the pointer to the BACnet Object;
• the value to be written in case of wrong input value.

The implementation of what above described is illustrated in the image below.
The enable variable (xEn) can be used to set the Out_of_Service state and therefore it is proper
to pass a variable to it, instead of a constant value.
The output udiPV_MSI_OpState, which returns the Present_Value of the MSI Object, and the
output wStatus_MSI_OpState, which is a WORD reporting the status of the FB operation, are
local or global variables, depending on whether one or both the information are used in the IEC
code or not.

3.4.13. HowTo Configure a Binary Input BACnet Object
In this paragraph we will configure the BI1_OutputCooling Binary Input BACnet Object to be
synchronized with the xOutput_Cooling IEC variable.
The implementation is relatively simple, as it is just required to call the BACnet_BI_SetPV FB into
a program in Background (e.g. the one used for the other objects: BACnet_Objs_P) and provide
as inputs:

• the value to be written on the BACnet Object (i.e. xOutput_Cooling);
• the pointer to the BACnet Object.

The implementation of what above described is illustrated in the image below.
The enable variable (xEn) can be used to set the Out_of_Service state and therefore it is proper
to pass a variable to it, instead of a constant value.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 48

The output xPV, which returns the Present_Value of the BI Object, and the output wStatus, which
is a WORD reporting the status of the FB operation, are local or global variables, depending on
whether one or both the information are used in the IEC code or not.

3.4.14. HowTo Configure an Analog Input BACnet Object
In this paragraph we will configure the BAI0_AmbTemp Analog Input BACnet Object to be
synchronized with the Analog Output 1 (variable AO_AmbTemp).
The implementation is relatively simple, as it is just required to call the BACnet_AI_SetPV FB into
a program in Background (e.g. the one used for the other objects: BACnet_Objs_P) and provide
as inputs:

• the value to be written on the BACnet Object (i.e. AO_AmbTemp) in INT or REAL format;
• the rScaler (in any case);
• the pointer to the BACnet Object.

The implementation of what above described is illustrated in the image below.
The enable variable (xEn) can be used to set the Out_of_Service state and therefore it is proper
to pass a variable to it, instead of a constant value.
The output rPV, which returns the Present_Value of the AI Object, and the output wStatus, which
is a WORD reporting the status of the FB operation, are local or global variables, depending on
whether one or both the information are used in the IEC code or not.

3.4.15. HowTo Link an EEPROM Parameter to a BACnet Multi State Value Object
In this paragraph we will link the usiSeasonMode EEPROM parameter to the
BMSV1_SeasonMode Multi State Value BACnet Object. It represents the operating mode of the
machine (summer, winter, auto).
The procedure to follow to implement it is very similar to what seen for the Analog Value (§3.4.10).
You actually will need to:

1. Rename the EEPROM parameter from usiSeasonMode to usiSeasonMode _E2;
2. Create a new global variable (same type as the EEPROM parameter) with the same name

the EEPROM parameter originally had, i.e. usiSeasonMode.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 49

3. Use the FBD program BACnet_Objs_P created in §3.4.10 and insert a new FBD free row
where you will call the BACnet_RelDef_MV_link_usiEE FB and:

a. use the EEPROM usiSeasonMode _E2 as input (pass its address to ptr_usiEE);
b. use the new usiSeasonMode global variable as output (connect it to

usiPV_scaled).
4. Provide the offset used for the EEPROM parameter, if the value in not in the [1-5] format;
5. Provide the value to be written on the PV in case of wrong input value.

The implementation of what above described is illustrated in the image below.
The BACnet Object which will be linked to the usiSeasonMode EEPROM parameter is the
BMSV1_SeasonMode Multi State Value Object.
The enable variable (xEn) can be used to set the Out_of_Service state and therefore it is proper
to pass a variable to it, instead of a constant value.
The output wStatus_MV_SeasMode is a WORD, local or global variable depending on whether
the status of FB is used in the IEC code or not.
The usiMode has to be set according to how you would like to manage the priorities between the
PLC and the BACnet side. Read the function block description for more details.
The xPrArrClear_MV input will be associated to a procedure that will set it from FALSE to TRUE,
and then restore it to FALSE, in order to clear the Priority Array on demand. The information about
whether the Priority Array is being used is provided by the xPrAct_usiSeasM output.

If you have already an HMI in your existing project, read the §3.4.19 EEPROM variable names
and HMI.

3.4.16. HowTo Setup a Schedule BACnet Object
Import the Schedule Template as Schedule Object. This template contains all the parameters that
would normally be used. You can choose to load the one with or the one without exceptions,
based on your needs.

Three different examples of implementation of the Schedule BACnet Object type are provided
with the project sample. In all the three examples, the schedule template without exceptions is
used.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 50

Example 1

In this example, the schedule object (Sc_OpMode) contains the operating mode (Normal: 0,
Comfort: 1, Not_occupied: 2) for working week:

- Monday to Friday:
o Normal from 0:00 to 6:29;
o Comfort from 6:30 to 17:59;
o Not_occupied from 18:00 to 23:59;

- on Saturday and Sunday: Not_occupied.

The default is Normal.
The setup is executed by modifying each attribute of the Object itself. For more clarifications,
have a look at the tests done with the supervisor in §3.5 Testing BACnet with YABE.

Example 2: HowTo Use the Schedule with REAL

In this example, the schedule template without exceptions is used. The implemented BACnet
protocol in the Eliwell controllers supports only UDINT as values of the Schedule. Therefore, in
case the supervisor uses REAL, it is required to read and write back the data as REAL. This can
be done by the BACnet_UdAsReal_read and BACnet_UdAsReal_write functions.
You typically would like to define the default value of the Schedule BACnet object as retentive (in
EEPROM), however, it is not straightforward to set it up in a REAL-equivalent data format. To
simplify its configuration, it is possible to link it to a REAL EEPROM parameter using the
BACnet_udiValue_link_rEE function block. Its implementation is shown in the picture below.

As it is configured, the value of the rSetpoint_DefSch EEPROM parameter will be stored into the
EEPROM Schedule_Default attribute of the Sc_Setpoint_REAL Schedule BACnet Object.

Example 3

In this example, the schedule template without exceptions is used. This is a trivial example that
shows how a Schedule, which is read form a supervisor using the UDINT data format, can be set
up. It is sufficient to define the Schedule default value in the Resources working space of
Application. The picture shows how to read the present value of the Schedule, which is changed
according to the settings normally modified by the supervisor.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 51

3.4.17. HowTo Setup a Calendar BACnet Object
Import the Calendar Template as Calendar Object. The template contains all the available
parameters for this object already setup.
The Calendar in the sample project contains the Italian holidays of 2018.
NOTE that once you set a value for one of the weekNDay parameters, in order to restore the null
value, you need to remove it and add it again.

3.4.18. HowTo Setup a Notification Class BACnet Object
Import the Notification Class Template as Notification Class Object. The template contains all the
available parameters for this object already setup.
At the moment, six notification class objects are setup in the sample project, but their configuration
is left up to the developer according to possibilities provided by the BACnet protocol.

3.4.19. EEPROM variable names and HMI
If the existing project in which you would like to implement the BACnet project has already an HMI
developed using the User Interface working environment, note that it is required to update the
EEPROM parameters names used in the HMI project (i.e. the EEPROM parameters links to
the IEC code will be lost, as their name has been modified in Application).

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 52

3.5. Testing BACnet with YABE
The BACnet protocol is normally used by supervisors. In order to test the implemented Object
without having a supervisor available, it is possible to use a so-called BACnet Explorer software.
In this chapter, the freeware YABE (Yet Another Bacnet Explorer) software will be used for testing.

3.5.1. HowTo Add a BACnet Device in YABE and Subscribe to an Object

In YABE, click on the icon. The popup windows shown on the side will open. In Local endpoint
enter the IP address of your computer and click on Add.
The BACnet devices found in the network will be listed.
Identify your Evolution/Advance from the BACnet Device name or from its IP address.
In Address Space tab you will see all the Object which are defined on the BACnet Device.

Search criteria for BACnet Devices BACnet Device List and Address Space

3.5.2. HowTo Subscribe a BACnet Object
Right-clicking an object, you can choose to Subscribe to an object. In the central tab of the
application, you will you see all the active subscriptions.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 53

3.5.3. HowTo Change the Relinquish_Default
The Relinquish_Default parameter is used in the Analog Value,
Binary Value and Multi State Value Objects.
We will test it with the iSetPoint parameter, which is an Analog
Value BACnet Object (BAV0_SetCool) linked to the
iSetPoint_E2 EEPROM parameter.
Select the BAV0_SetCool object in the Address Space tab. On
the right, you have the Properties tab, where all the properties
of the object attributes are shown.
Also in the HMI, you will see that the PV, the RelDef and the
EEPROM value are aligned at 25,0 °C. Now you can change
the Relinquish_Default, by typing the desired value and
pressing the return button. This action will change the RelDef,
the PV and also align the RelDef to the EEPROM parameter.
If you put the object out of service, when you change the
EEPROM parameter (e.g. using the HMI), the object will not be aligned: YABE will still show the
old values and vice-versa.
Note that the Properties tab is not refreshed automatically. You need to click on another object
and then click back again on the object of which you would like to see the updated properties.

3.5.4. HowTo Write on the Priority_Array
To write on the Priority_Array, it is required to press the combination CTRL+ALT+Number, where
Number is a number from 1 to 9, with an offset of 1 with respect to the Priority_Array row in which
you would like to write.
In this way, it is not possible to write on the rows 9-15.
To execute the write operation, type then the value in the Present_Value field.

3.5.5. HowTo Edit a Calendar Object
Right click on the Calendar object and choose Show Calendar. This will open the Calendar editor.

Here you can add, modify or delete the various entries of the calendar. Click “Write & Read back”
to write the values.
Then, you can see the effect of your choices on the Present_Value of the Calendar, which is also
shown on the HMI in form of “WorkDay”.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 54

3.5.6. HowTo Edit a Schedule Object
Right click on the Schedule object and choose Show Schedule.
This will open the Schedule editor.
Here you can add, modify or delete the various entries of the
schedule. Click “Update & Read back” to write the values.
Note that only the values compatible with the UDINT data format
are supported by the controller, therefore you need to set it up
accordingly in YABE before any write operation is executed (e.g.
select the Unsigned Int format).
YABE uses Real as default and when you open a Schedule object
that contains already some entries it will interpret the UDINT data
as REAL, leading therefore to a wrong read operation. To be able
to write again after this, it is required to delete all the entries and
re-create the Schedule.

3.5.7. HowTo Reinitialize the Device via BACnet
The ReinitDevice procedure has been defined in the project and
it can be triggered using YABE.
Go in Functions\Device control.
Select the Type of reinitialization that you would like to execute (cold or warm restart) and confirm
your operation to run it.

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 55

4. Appendix

Appendix

4.1. Hardware Information

4.1.1. Usage of the EEPROM vs BACnet
On the M17x platform controllers, on a single EEPROM location it is possible to write only 100.000
times (this is related to the controller hardware specs). Afterwards, it is not anymore guaranteed
that the value will be retained correctly.

To each EEPROM parameter one or more EEPROM locations are assigned, depending on the
data type.

The above-mentioned limitation has to be taken into account when using the FBs of this library
that write on EEPROM. These include:

- The “link” FBs, and in this case what especially has to be taken under consideration is
the use of the Mode 2. In Mode 2, the Present Value is written on the EEPROM, while
in Mode 0 and 1 it is the Relinquish Default that gets written on the EEPROM instead.
Normally, the Present Value is more likely to be subject to frequent changes than the
Relinquish Default, therefore the risk to have more frequent writes is higher in Mode 2
than in Mode 0 or 1.

- The “BACnet_ModBUS_SL” FBs, when the Relinquish Default is set to be stored in
EEPROM.

4.2. Acronyms
• When talking about the IEC side/code in this document, the reference is to the PLC

side/code.

4

 Expert Support Machine Solutions BACnet Addons Library User Guide

 Doc. v1.4 May 22, 2018 56

5. Publisher’s Info

Publisher’s Info

The publisher of this library is the HVAC Solution Center based in Alpago (BL), Italy.
Its main goal is to enhance L2G and G2L solutions like libraries, applications and examples to
support the ADEs community.

The authors are:

• Pierpaolo Armeli
pierpaolo.armeli@schneider-electric.com

• Federico Marcassa
federico.marcassa@schneider-electric.com

5

mailto:pierpaolo.armeli@schneider-electric.com
mailto:federico.marcassa@schneider-electric.com

	1. Introduction to BACnet
	1.1. Overview
	1.2. BACnet/IP and BACnet MS/TP on Evolution/Advance
	1.2.1. BACnet profile and options

	1.3. BACnet Objects on Evolution/Advance
	1.4. BACnet Objects on FreeStudio
	1.4.1. Object Attributes
	1.4.1.1. Object Type, Identifier and Name
	1.4.1.2. Present Value, Priority Array and Relinquish Default
	1.4.1.3. Attributes Properties

	1.4.2. HowTo Restore the EEPROM BACnet defaults
	1.4.3. Device Object
	1.4.4. Analog Objects
	1.4.4.1. Analog_Input
	1.4.4.2. Analog_Output, Analog_Value

	1.4.5. Binary Value Object
	1.4.6. Multi State Objects
	1.4.7. Calendar Object
	1.4.8. Schedule Object
	1.4.9. Notification Class Object

	2. BACnet Addons Library
	2.1. Overview
	2.2. Description
	2.3. Priority Array and Relinquish Default Management in the Library
	2.4. Function Blocks and Programs
	2.4.1. List of the FBs and Progs
	2.4.2. BACnet_PVUpdPr
	2.4.3. BACnet_AI_SetPV
	2.4.4. BACnet_RelDef_AV_link_*EE
	2.4.4.1. BACnet_RelDef_AV_link_iEE
	2.4.4.2. BACnet_RelDef_AV_link_rEE
	2.4.4.3. BACnet_RelDef_AV_link_uiEE

	2.4.5. BACnet_BI_SetPV
	2.4.6. BACnet_RelDef_BV_link_xEE
	2.4.7. BACnet_MSI_*SetPV
	2.4.7.1. BACnet_MSI_diSetPV
	2.4.7.2. BACnet_MSI_udiSetPV
	2.4.7.3. BACnet_MSI_usiSetPV

	2.4.8. BACnet_RelDef_MV_link_*EE
	2.4.8.1. BACnet_RelDef_MV_link_iEE
	2.4.8.2. BACnet_RelDef_MV_link_rEE
	2.4.8.3. BACnet_RelDef_MV_link_udiEE
	2.4.8.4. BACnet_RelDef_MV_link_uiEE
	2.4.8.5. BACnet_RelDef_MV_link_usiEE

	2.4.9. BACnet_ObjID
	2.4.10. BACnet_ObjID_De_store_EE
	2.4.11. BACnet_UdAsReal_read
	2.4.12. BACnet_UdAsReal_write
	2.4.13. BACnet_udiValue_link_rEE

	3. BACnet Application Project Sample
	3.1. Overview
	3.2. Sample thermostat application
	3.2.1. hysteresis_ST
	3.2.2. Thermostat
	3.2.3. usiOperating_State
	3.2.4. Other status variables and EEPROM parameters

	3.3. BACnet Objects Templates
	3.4. Implementing the BACnet protocol into an existing application
	3.4.1. Load the BACnet_IEC.PLL and BACnet_Addons.plclib libraries
	3.4.2. Add the Device BACnet Object
	3.4.3. Add an Analog Value BACnet Object
	3.4.4. Add a Binary Value BACnet Object
	3.4.5. Add a Multi State Value BACnet Object
	3.4.6. Define the EEPROM parameters & StatusVars used in the BACnet setup
	3.4.7. HowTo Code the BACnet_Setup_Init program
	3.4.8. HowTo Code the BACnet_BBMD_ReinitDevice program
	3.4.9. HowTo Automate the Present_Value update procedure
	3.4.10. HowTo Link an EEPROM Parameter to a BACnet Analog Value Object
	3.4.11. HowTo Link an EEPROM Parameter to a BACnet Binary Value Object
	3.4.12. HowTo Configure a Multi State Input BACnet Object
	3.4.13. HowTo Configure a Binary Input BACnet Object
	3.4.14. HowTo Configure an Analog Input BACnet Object
	3.4.15. HowTo Link an EEPROM Parameter to a BACnet Multi State Value Object
	3.4.16. HowTo Setup a Schedule BACnet Object
	3.4.17. HowTo Setup a Calendar BACnet Object
	3.4.18. HowTo Setup a Notification Class BACnet Object
	3.4.19. EEPROM variable names and HMI

	3.5. Testing BACnet with YABE
	3.5.1. HowTo Add a BACnet Device in YABE and Subscribe to an Object
	3.5.2. HowTo Subscribe a BACnet Object
	3.5.3. HowTo Change the Relinquish_Default
	3.5.4. HowTo Write on the Priority_Array
	3.5.5. HowTo Edit a Calendar Object
	3.5.6. HowTo Edit a Schedule Object
	3.5.7. HowTo Reinitialize the Device via BACnet

	4. Appendix
	4.1. Hardware Information
	4.1.1. Usage of the EEPROM vs BACnet

	4.2. Acronyms

	5. Publisher’s Info

