

Expert Support Machine Solutions

ModBUS Addons
Library

User Guide

Publisher: HVAC Solution Center, Alpago (BL) – Italy
Authors: Federico Marcassa, Pierpaolo Armeli
Doc. Version: v0.7

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 2

Table of Contents

1. Modbus Commands on Event _______________________________________ 6

1.1. Introduction __ 6

1.2. ModBUS Master Functions in Application _______________________________________ 6
1.2.1. Configuration Details ___ 6
1.2.2. ModBUS Master: Application vs Connection ___________________________________ 7
1.2.3. ModBUS Master from Application: remarks ____________________________________ 7

2. ModBUS Addons Library ___ 8

2.1. Library Overview __ 8
2.1.1. Library Description ___ 8
2.1.2. Function Blocks and Structures List __ 9
2.1.3. Library Implementation Overview __ 9

2.2. Library Contents Details __ 11
2.2.1. ModbusRTUKeepAlive ___ 11
2.2.2. rtuNodeMgr __ 12
2.2.3. fbModbusRTU_SendFC01 __ 13
2.2.4. fbModbusRTU_SendFC02 __ 13
2.2.5. fbModbusRTU_SendFC03 __ 13
2.2.6. fbModbusRTU_SendFC04 __ 14
2.2.7. fbModbusRTU_SendFC05 __ 14
2.2.8. fbModbusRTU_SendFC06 __ 15
2.2.9. fbModbusRTU_SendFC15 __ 15
2.2.10. fbModbusRTU_SendFC16 __ 16
2.2.11. strModbusRTUslave ___ 16
2.2.12. enKeepAliveStatus __ 17

3. Appendix ___ 18

3.1. ModBUS Bridge Functionality __ 18
3.1.1. ModBUS Addresses ___ 18
3.1.2. Commands supported by the Bridge __ 19

4. Publisher’s Info ___ 20

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 3

Safety Information and Good Practices

Safety Information and Good Practices

Before You Begin
General
The products specified in this document have been tested under actual service conditions. Of
course, your specific application requirements may be different from those assumed for this and
any related examples described herein. In that case, you will have to adapt the information
provided in this and other related documents to your particular needs. To do so, you will need to
consult the specific product documentation of the hardware and/or software components that you
may add or substitute for any examples specified in this documentation. Pay particular attention
and conform to any safety information, different electrical requirements and normative standards
that would apply to your adaptation.
© 2018 Eliwell Controls Srl. All rights reserved.

 WARNING
REGULATORY INCOMPATIBILITY
Be sure that all equipment applied and systems designed
comply with all applicable local, regional and national
regulations and standards

Failure to follow these instructions can result in death,
serious injury, or equipment damage.

Note
Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Eliwell Controls Srl for any consequences arising
out of the use of this material. A qualified person is one who has skills and knowledge related to
the construction and operation of electrical equipment and its installation, and has received
safety training to recognize and avoid the hazards involved. Failure to observe this information
can result in injury or equipment damage.
The use and application of the information contained herein require expertise in the design and
programming of automated control systems. Only the user or integrator can be aware of all the
conditions and factors present during installation and setup, operation, and maintenance of the
machine or process, and can therefore determine the automation and associated equipment and
the related safeties and interlocks which can be effectively and properly used. When selecting
automation and control equipment, and any other related equipment or software, for a particular
application, the user or integrator must also consider any applicable local, regional or national
standards and/or regulations.

Some of the major software functions and/or hardware components used in the proposed
architectures and examples described in this document cannot be substituted without significantly
compromising the performance of your application. Further, any such substitutions or alterations
may completely invalidate any proposed architectures, descriptions, examples, instructions,
wiring diagrams and/or compatibilities between the various hardware components and software
functions specified herein and in related documentation. You must be aware of the consequences
of any modifications, additions or substitutions.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 4

A residual risk, as defined by EN/ISO 12100-1, Article 5, will remain if:
• it is necessary to modify the recommended logic and if the added or modified components

are not properly integrated in the control circuit;
• you do not follow the required standards applicable to the operation of the machine, or if

the adjustments to and the maintenance of the machine are not properly made (it is
essential to strictly follow the prescribed machine maintenance schedule);

• the devices connected to any safety outputs do not have mechanically-linked contacts.

 CAUTION
EQUIPMENT INCOMPATIBILITY
Read and thoroughly understand all device and software
documentation before attempting any component substitutions
or other changes related to the application examples provided
in the document

Failure to follow these instructions can result in injury, or
equipment damage.

Start-Up and Test
Before using electrical control and automation equipment after design and installation, the
application and associated functional safety system must be subjected to a start-up test by
qualified personnel to verify correct operation of the equipment. It is important that arrangements
for such testing be made and that enough time is allowed to perform complete and satisfactory
testing.

 CAUTION
EQUIPMENT OPERATION HAZARD

•Verify that all installation and set up procedures have been
completed.

•Before operational tests are performed, remove all blocks or
other temporary holding means used for shipment from all
component devices

•Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in injury, or
equipment damage.

Verify that the completed system, including the functional safety system, is free from all short
circuits and grounds, except those grounds installed according to local regulations. If high-
potential voltage testing is necessary, follow the recommendations in equipment documentation
to help prevent injury or equipment damage.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 5

Operations and Adjustments
Regardless of the care exercised in the design and manufacture of equipment or in the selection
and ratings of components, there are hazards that can be encountered if such equipment is
improperly installed and operated.
In some applications, such as packaging machinery, additional operator protection such as point-
of-operation guarding must be provided. This is necessary if the hands and other parts of the
body are free to enter the pinch points or other hazardous areas where serious injury can occur.
Software products alone cannot protect an operator from injury. For this reason, the software
cannot be substituted for or take the place of point-of-operation protection.

 WARNING
UNGUARDED MACHINERY CAN CAUSE SERIOUS INJURY
•Do not use this software and related automation equipment on
equipment which does not have point-of -operation protection.

•Do not reach into machinery during operation.

Failure to follow these instructions can result in death,
serious injury, or equipment damage.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation
protection have been installed and are operational before placing the equipment into service. All
interlocks and safeties related to point-of-operation protection must be coordinated with the
related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation
protection is outside the scope of the examples and implementations suggested herein. It is
sometimes possible to adjust the equipment incorrectly and this produce unsatisfactory or unsafe
operation. Always use the manufacturer instructions as a guide to functional adjustments.
Personnel who have access to these adjustments must be familiar with the equipment
manufacturer instructions and the machinery used with the electrical equipment.
Only those operational adjustments actually required by the machine operator should be
accessible to the operator. Access to other controls should be restricted to help prevent
unauthorized changes in operating characteristics.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 6

1. Modbus Commands on Event

ModBUS Commands on Event

1.1. Introduction
It is possible to send ModBUS commands on event from FreeStudio Application starting from the
following targets on:

• ADVANCE with BIOS 596.6 and greater;
• ADVANCE 4DIN with BIOS 668.6 and greater.

The first release that supports this functionality is FreeStudio 3.9.1. Until then, it was possible to
send ModBUS commands only by using Connection, on those devices.

1.2. ModBUS Master Functions in Application
From FreeStudio 3.9.1, the followings ModBUS Master functions have been added in Application:

These functions allow to send ModBUS commands on Event through the master RS485 port
by calling them in Application.
The messages can be send only from programs assigned to the Background task.

1.2.1. Configuration Details
In order to set the RS5485 port as ModBUS Master, it is
required to set it from Connection.
Therefore, the Connection project is always required
so that the ModBUS Master functions available in
Application can be used.

1

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 7

The message that has to be sent will be read from the FC function by the given object pointer.
The pointer has a @INT data type, therefore shorter/longer messages (e.g. USINT, UDINT,
REAL) to be sent have to be first stored/split in an INT variable. Then, the pointer to this last
one has to be passed to the function.

1.2.2. ModBUS Master: Application vs Connection
The ModBUS Master commands available in Application are NOT a
substitution for the ModBUS functionalities available in Connection!
The ModBUS commands sent from Application will be executed in the
Background task and therefore will block the Background task during
their execution. The ModBUS commands on Event will be sent only after
that the RS485 is free from other commands.
For example, if the RS485 is busy because of commands sent from
Connection (e.g. a Slave is not available), a on Event command sent
from Application will block the background task execution until the
RS458 will be free and able to execute the on-Event command.
This means that the commands on Event have to used only when
required and not instead of using Connection (to be used when
possible).

1.2.3. ModBUS Master from Application: remarks
It is also important to evaluate the command timeout used when calling the FC functions, as it
will block the Background task for the whole timeout period in case of any communication
delay/error.

In addition, it has to be checked if any slave is unreachable: the commands sent to the
unreachable slaves should be skipped, otherwise the Background task will be blocked for the
whole timeout period of each command.
It is a good practice not to send too many ModBUS messages per each background task
cycle execution.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 8

2. ModBUS Addons Library

ModBUS Addons Library

2.1. Library Overview
The current documentation (v0.7) is related to the ModBUS Addons library v.0.9.2. The library
is tested/supported on FreeStudio 3.9.1 and greater versions.

2.1.1. Library Description
The ModBUS Addons library makes full use of the ModBUS Master on Event functionalities
available in FreeStudio Application beginning from the controller targets included with the version
3.9.1.
The key functionalities of the library are:

• The Keep Alive functionality, which allows to keep alive the slaves which require to
receive at least one ModBUS message in a specifically defined timeframe, in order to keep
the ModBUS communication active.
This goes around the limitation arisen by the timeouts for the messages defined in SoM
Connection: in case some slaves are not connected, their timeouts may slow down the
communication and therefore not allow to send messages to a certain (connected) slave
with the desired frequency, leading to the loss of communication with that slave.

• Ability to automatically manage the node presence state (sysMbRtuNodePresence)
based on the slave status, therefore enabling or disabling the SoM Connection nodes.

• Optimized ModBUS on event messaging operation, by sending messages on event
only to the slaves which are effectively present.

• Ability to monitor and inspect the status of the slaves, keeping also a history of the
ModBUS messages on event related to each slave.

The targets supported by this library version are:
• ADVANCE with BIOS 596.6 and greater;
• ADVANCE 4DIN with BIOS 668.6 and greater.

Note: the rtuNodeMgr function block of this library cannot be used for those slaves that use the
Communication library. This has no impact on the Keep Alive functionality, which is independent.

2

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 9

2.1.2. Function Blocks and Structures List
The function blocks (FB), functions (F), structures (str) present in the library are the following:

Type Name Description

FB ModbusRTUKeepAlive It executes the Keep Alive functionality and monitor the
slave connection status.

FB rtuNodeMgr It enables/disables the nodes defined in Connection, based
on their presence.

FB fbModbusRTU_SendFC03
FBs that use the ModBUS on event FC03, FC06 and FC16
functions, but send the messages only when the slave is
effectively present.

FB fbModbusRTU_SendFC06

FB fbModbusRTU_SendFC16

str strModbusRTUslave
Structure that contains all the information regarding the on
event ModBUS messaging operation originating from a
certain slave.

2.1.3. Library Implementation Overview

The below reported schematic synthetizes how the ModBUS Addons library has been designed
to work and how the various function blocks and structures are interconnected.

There is a central structure, the strModbusRTUslave, which will be defined as a global variable
and there will be one per slave. This structure contains all the relevant information about the slave
(address, status, timeout for the retry, number of retries, Keep Alive settings, communication
statistics) and is used in all the function blocks that make use of the ModBUS on event
functionalities.
This allows to keep the structure always aligned every time a message is sent and, on the other
hand, it optimizes the communication, by not sending messages to the slaves which are not
present.

The ModbusRTUKeepAlive is a function block that sends a message at each time interval
defined by the uiKeepAlivePeriodPresent value, when the node status is PRESENT, and at each
uiKeepAlivePeriodMissing, in all the other cases. This allows to keep alive the slaves that require
to receive at least one ModBUS message at each specific timeframe, else those slaves disable
the ModBUS communication. This could not be guaranteed if the messages are sent from
Connection, e.g. in case there are not connected slaves that lead to long waits on the RS485,
because of the timeout associated to each message.
Based on the outcome of each message sent by the ModbusRTUKeepAlive, the status of the
related slave is updated. Considering that the slave information structure is passed whenever a
ModBUS command is sent by using the fbModbusRTU_SendFC** FBs (e.g. a on event command
defined in background and used by the specific application), it may happen that some or all of the
messages that are supposed to be sent by the ModbusRTUKeepAlive are skipped, whenever in
the defined timeframe another message has already been sent. This optimizes the functionality
of the Keep Alive FB and reduces the traffic on the RS485.
It is required to instance one ModbusRTUKeepAlive per slave and assign the related program to
the background task.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 10

The fbModbusRTU_SendFC03, fbModbusRTU_SendFC06 and fbModbusRTU_SendFC16
function blocks use the ModBUS on event FC03, FC06 and FC16 functions, but keep also into
account the content of the slave structure. This has the following benefits:

- a message is sent only if the target slave is effectively present;
- in case of a communication error, a send retry takes place;
- the structure is updated at each message sent; in details, the information about the status

is updated and also the time of the last sent message, which allows to skip a Keep Alive
message, if not required: in this case, it acts, in reality, in place of the Keep Alive.

In the ModBUS Addons library, the fbModbusRTU_SendFC03, fbModbusRTU_SendFC06 and
fbModbusRTU_SendFC16 function blocks are already instanced in the ModbusRTU_SendFC03,
ModbusRTU_SendFC06 and ModbusRTU_SendFC16 instances respectively. This allows to
simplify the call of the FBs and reduces the RAM memory usage. These function blocks have to
be called in Background.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 11

The rtuNodeMgr function block automatically enables and disables the node presence related to
the nodes defined in Connection, based on the slave status defined in the slave structure. In this
way, when it is found that a slave is not present, the related node in Connection is disabled, in
order not to delay the communication with the other present nodes.
This is done by writing on the sysMbRtuNodePresence target variable. In addition, the FB allows
to manually force the presence of a node and to forcefully disable the writes for a node. One
function block instance per slave has to be created.

For any additional detail about how to implement the library, the key reference is the sample
project attached to the library itself.

2.2. Library Contents Details

This chapter goes through the details of each component of the ModBUS Addons library.

2.2.1. ModbusRTUKeepAlive
This function block allows to get the following functionalities:

- Monitor the slave communication status.
- Keep alive the slaves that require to receive at least one ModBUS message at each

specific timeframe, else those slaves disable the ModBUS communication.

These goals are achieved by sending a ModBUS message to the targeted slave at each specific
period. Based on the outcome of each message, the status of the related slave is updated. The
slave is considered to be present only if it gets a correct answer.
It is required to create one instance of the FB per slave and assign the related program to the
background task.

Inputs Description
All the settings, which are not defined as inputs, are included in the strSlaveMonitored
structure.
Before sending a message, the FB waits for the xMsgSentByOther input to be TRUE. This
allows to avoid the various instances of the FB sending messages all at the same time. The
message is sent based on the udTimerLastSent information which is present in the slave
structure; if a message has already been sent to the slave in the specific timeframe by any other
call in the application, it is not send again by this FB, in order to reduce the traffic on the RS485.
The xWaitingReboot input can be used to wait for the slave until its reboot, right after a reboot
command has been sent (no ModBUS messages will be sent in the meanwhile). This will set the
Slave in the REBOOTWAIT status and back to PRESENT after the reboot time, if the Slave will
be reachable again.
Note that, if the Slave status is manually set to REBOOTWAIT and the Keep Alive functionality is
not used, the status has to be restored to PRESENT manually.
After getting no reply from the Slave, its status will be set to MISSING. In this case, the Keep Alive
will try to reach the slave with a different timeout, which is normally longer in order to reduce the
traffic on the RS485.
The xEN input, when FALSE, will set the Slave status to DISABLED. In this case no message will
be sent using the FCxx function blocks. Setting the xEN to TRUE will re-enable the slave and
check whether it is present.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 12

Input:
Name Type Description

xEN BOOL Slave Enabled

strSlaveMonitored @strModbusRTUslave Monitored Slave

xMsgSentByOther BOOL Message Sent by another instance

xWaitingReboot BOOL The slave has been rebooted externally, it works on
rising edge

Output:
Name Type Description

iLastValueRead INT Last value read from the selected register

xMsgSent BOOL Message Sent by one of the instances

2.2.2. rtuNodeMgr

This function block automatically enables and disables the node presence related to the nodes
defined in Connection, based on the slave status defined in the strSlaveMonitored structure.

In this way, when it is found that a slave is not present, the related node in Connection is disabled,
in order not to delay the communication with the other present nodes. This is done by writing on
the sysMbRtuNodePresence target variable.

The two additional inputs allow to:
- xForceManualPresence: manually force the presence of a node;
- xForceWriteDisable: forcefully disable the writes for a node.

Note: since the rtuNodeMgr function block of the ModBUS Addons library and the function blocks
of the Communication library act both actively on the sysMbMRtuNodePresence array, the
rtuNodeMgr cannot be used for those slaves that use the Communication library.
This has no impact on the Keep Alive functionality, that can be used without encountering issues
as it works independently.

Input:
Name Type Description

xEN BOOL

strSlaveMonitored @strModbusRTUslave Monitored Slave

iNode INT Slave Node Index

xForceManualPresence BOOL If true, sysMbMRtuNodePresence is forced to TRUE

xForceWriteDisable BOOL If true, sysMbMRtuNodeDisableWrites is forced to
TRUE

Output:
Name Type Description

usStatus USINT 0=Disabled 1=Running 2=Cfg Error

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 13

2.2.3. fbModbusRTU_SendFC01
This function block executes the sysMbMRTU_FC01 command (Read Coils), by also taking into
account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.4. fbModbusRTU_SendFC02
This function block executes the sysMbMRTU_FC02 command (Read Discrete Input), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.5. fbModbusRTU_SendFC03
This function block executes the sysMbMRTU_FC03 command (Read Holding Register), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 14

- the strSlaveMonitored structure is updated with the info about the slave status, the
time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.6. fbModbusRTU_SendFC04
This function block executes the sysMbMRTU_FC04 command (Read Input Registers), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range
19 = Function not executed because broadcast not allowed

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.7. fbModbusRTU_SendFC05
This function block executes the sysMbMRTU_FC05 command (Write Single Coil), by also taking
into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 15

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.8. fbModbusRTU_SendFC06
This function block executes the sysMbMRTU_FC06 command (Write Single Register), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.9. fbModbusRTU_SendFC15
This function block executes the sysMbMRTU_FC15 command (Write Multiple Coils), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 16

2.2.10. fbModbusRTU_SendFC16
This function block executes the sysMbMRTU_FC16 command (Write Multiple Registers), by also
taking into account the following:

- status of the slave (if not present, the message is not sent);
- number of retries in case of error;
- the strSlaveMonitored structure is updated with the info about the slave status, the

time of the last sent message, the messages/errors counters, the last message code.

The function block returns a UINT which could have the following meanings:
0 = No error occurred
8 = Communication channel configuration error

14 = Invalid response message
16 = Timeout reached
17 = Function not executed due to try to call it in Timed
18 = Number of object out of range

255 = Message not sent, slave not present
Other values correspond to the Modbus Exception codes

2.2.11. strModbusRTUslave
This structure contains all the relevant information about the slave (address, status, timeout for
the retry, number of retries, Keep Alive settings, communication statistics) and is used in all the
function blocks that make use of the ModBUS on event functionalities.
This allows to keep the structure always aligned every time a message is sent and, on the other
hand, it optimizes the communication, by not sending messages to the slaves which are not
present.
When the Slave Address is equal to 0, which corresponds to a ModBUS Broadcast message, the
following settings are applied automatically when calling the FC function blocks that support the
broadcast messages (05, 06, 15, 16), by changing the related slave structure:

• The status is set to PRESENT, as this property defines whether the message will be sent
or not, but is undefined for the 0 address. Note: the Keep Alive cannot be used for the 0
address.

• The Timeout is set to 1 ms, as the slaves do not reply, therefore the waiting time will not
bring any benefit, but only extend the background execution time.

• The Retry is set to 0, as the need to retry the send operation cannot be based on any
feedback coming from the slaves, because the slaves do not reply to broadcast messages.

Name Type Description

usSlaveAddress USINT Address of the slave to be monitored

enSlaveStatus enKeepAliveStatus 0=Missing 1=Present 2=Disabled 4=CFG ERROR
8=Reboot waiting

uiTimeout UINT Message Timeout [ms] - Default 400

usRetry USINT Number of retries - Default 1

uiKeepAliveHoldingRegister UINT Holding Register to be read for KeepAlive

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 17

uiKeepAliveWaitBeforeSend UINT Min Time to wait before sending a new message for
KeepAlive [ms] - Default 600

uiKeepAlivePeriodPresent UINT Message period when slave is present [ms] - Default
1000

uiKeepAlivePeriodMissing UINT Message period when slave is not present [ms] -
Default 30000

uiKeepAliveRebootTime UINT Time to be waited after the slave reboot

uiLastMsgType USINT Last Valid Message Type

udMsgSentOkCounter UDINT Number of messages sent correctly

udMsgSentErrCounter UDINT Number of error messages

uiLastErrorCode UINT Last Error Code

usLastErrorMsgType USINT Last Error Message Type

uiLastErrorRegister UINT Last Error Message First Register

udTimerLastSent UDINT sysTimer value of last message sent

2.2.12. enKeepAliveStatus
This enumerative is about the Slave Status and can have the following entries:

Name Value Description

MISSING 0 Slave Communication Error

PRESENT 1 Slave Online

DISABLED 2 Slave Disabled

CFGERROR 4 Configuration Error

REBOOTWAIT 8 Reboot Time Waiting

The FC function blocks included in this library make use of the Keep Alive status of the slave. The
key points are:

• Only if the slave status is PRESENT, the FC function blocks send ModBUS messages.

• When the status is MISSING, the Keep Alive will still send messages, but with a different
period (normally longer). In case the Keep Alive is not used, the status has to be manually
reset to PRESENT.

• When the slave is DISABLED, no message is sent, not even from the Keep Alive. This
status is set by the Keep Alive when its xEN is set to FALSE. It is restored when it is set
back to TRUE.

• The REBOOTWAIT status allows not to send messages to a slave for a specific period,
during which the slave is supposed to be rebooting. After that, the slave status can be set
again back to PRESENT. This takes place automatically when the Keep Alive is used,
otherwise it has to be reset manually.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 18

3. Appendix

Appendix

3.1. ModBUS Bridge Functionality
The ADVANCE can act as a bridge through which the Slaves (e.g. AVP) are accessible.
To enable the Bridge functionality, it is required to call the sysBridge function from the
Application running on the ADVANCE.

• The first input of the sysBridge function is the address of the Slave for which you would
like the Bridge function to be enabled.

• Passing 255 as address (as in the picture), all the Slaves will be enabled.
The sysBridge_Priority function allows to assign to the Bridge the same priority which the
ModBUS messages managed by the ADVANCE have.

Bridge (ADVANCE) Application code in a Background task program

3.1.1. ModBUS Addresses
• When the bridge is disabled, the ADVANCE replies to all the ModBUS addresses [1-255]

under the TCP/IP protocol.
• When the bridge is enabled, the ADVANCE uses only the 255 ModBUS address.

The other addresses are left free for the Slaves.
The messages sent to an address other than 255 are routed to the related Slave.

In order to access a Slave (e.g. AVP) by using the bridge function, the communication of the
Slave has to be set as follows:

• The IP address is the bridge address (ADVANCE).
• The ModBUS address is the one of the Slave you would like to access (AVP address).

3

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 19

3.1.2. Commands supported by the Bridge
The Bridge supports the ModBUS Commands 0x03 (Read Holding Register) and 0x16 (Write
Multiple Register) and the application/BIOS update from Device and Application.

In order to execute application/BIOS updates through ModBUS using the Bridge functionality, it
is highly recommended to temporarily disable all the ModBUS communications on the
network that normally take place from the master.
The aim is to have the highest available bandwidth for the specific ModBUS action.
This is equivalent to temporarily enable a Service mode that will need to:

• Set to FALSE all the sysMbMRtuNodePresence entries.
• Disable all the on Event ModBUS commands.

 Expert Support Machine Solutions ModBUS Addons Library User Guide

 Doc. v0.7 May 29, 2018 20

4. Publisher’s Info

Publisher’s Info

The publisher of this library is the HVAC Solution Center based in Alpago (BL), Italy.
Its main goal is to work on machine architecture solutions, software libraries and application notes.
Its members are:

• Federico Marcassa
federico.marcassa@schneider-electric.com

• Pierpaolo Armeli
pierpaolo.armeli@schneider-electric.com

4

mailto:federico.marcassa@schneider-electric.com
mailto:pierpaolo.armeli@schneider-electric.com

	1. Modbus Commands on Event
	1.1. Introduction
	1.2. ModBUS Master Functions in Application
	1.2.1. Configuration Details
	1.2.2. ModBUS Master: Application vs Connection
	1.2.3. ModBUS Master from Application: remarks

	2. ModBUS Addons Library
	2.1. Library Overview
	2.1.1. Library Description
	2.1.2. Function Blocks and Structures List
	2.1.3. Library Implementation Overview

	2.2. Library Contents Details
	2.2.1. ModbusRTUKeepAlive
	2.2.2. rtuNodeMgr
	2.2.3. fbModbusRTU_SendFC01
	2.2.4. fbModbusRTU_SendFC02
	2.2.5. fbModbusRTU_SendFC03
	2.2.6. fbModbusRTU_SendFC04
	2.2.7. fbModbusRTU_SendFC05
	2.2.8. fbModbusRTU_SendFC06
	2.2.9. fbModbusRTU_SendFC15
	2.2.10. fbModbusRTU_SendFC16
	2.2.11. strModbusRTUslave
	2.2.12. enKeepAliveStatus

	3. Appendix
	3.1. ModBUS Bridge Functionality
	3.1.1. ModBUS Addresses
	3.1.2. Commands supported by the Bridge

	4. Publisher’s Info

